
X_SOCKET contains
- stats structure
- error status

X_STATS contains
- cumulative counters
- average performance data
- incremental performance data

X_SOCKET * x_socket(int socktype, X_SOCKET *skt)

Return a new socket of type socktype which is SOCK_STREAM or SOCK_DGRAM. This call
will always return a socket structure, however if the socket creation fails the socket structure will
record an error status which can be obtained through x_sockstatus(). If skt is NULL, space for the
socket structure is allocated using malloc, otherwise the supplied structure is initialized and
returned.

int x_close(X_SOCKET *skt)

Close the socket skt. Returns 0 on success and -1 on error. This call returns -1 immediately
without changing the error status of skt if skt is marked with an error on entry. This call does not
free the socket structure.

int x_connect(X_SOCKET *skt, const struct sockaddr *addr, int len)

For a SOCK_DGRAM socket skt this call specifies the peer address, defined by addr and len, to
be used in sending and receiving datagrams. For a SOCK_STREAM socket skt this call attempts
a connection operation with the peer defined by addr and len. Returns 0 on success and -1 on
error. This call returns -1 immediately without changing the error status of skt if skt is marked
with an error on entry.

int x_bind(X_SOCKET *skt, const struct sockaddr *addr, int len)

Associate the socket skt with the specified addr. Returns 0 on success and -1 on error. This call
returns -1 immediately without changing the error status of skt if skt is marked with an error on
entry.

int x_listen(X_SOCKET *skt, int backlog)

Configures socket skt to begin listening for incoming connection requests using backlog as the
size of the queue for pending requests. Returns 0 on success and -1 on error. This call returns -1
immediately without changing the error status of skt if skt is marked with an error on entry.

X_SOCKET *x_accept(X_SOCKET *skt, struct sockaddr *addr, int *len)

For a socket skt in the listening state, this call removes the first pending connection request from
the queue and returns a socket for use with the connection. If, on entry, skt is marked with an

error, this call immediately returns NULL without changing the error status.

int x_setsockopt(X_SOCKET *skt, int optname, void *optval, int optlen)

Uses the data described by optval and optlen to set optname on socket skt. Returns 0 on success
and -1 on error. If, on entry, skt is marked with an error, this call immediately returns -1 without
changing the error status. The possible option names are

SOCK_STREAM

SOCK_DGRAM
QTTL int The duration (in msec) that unacknowledged messages will remain

available for retransmission.

Both
SNDSIZE int The packet size used for the underlying transport. This defaults to

the MTU.
NOPMTUD int Disable PMTUD.

int x_getsockopt(X_SOCKET *skt, int optname, void *optval, int *optlen)

Returns, in optval and optlen, the data describing optname on socket skt. On entry optlen is the
size of space pointed to by optval. On exit, optlen is changed to reflect the actual size of the
returned data. This call returns 0 on success and -1 on error. If, on entry, skt is marked with an
error, this call immediately returns -1 without changing the error status. In addition to the option
names valid for the x_setsockopt() call the following additional options are available.

SOCK_STREAM

SOCK_DGRAM
MTU int current MTU
MSGSIZE int The maximum size of an individual message.

X_STATS * x_sockstats(X_SOCKET *skt)

Compute and return current performance data for socket skt. If, on entry, skt is marked with an
error, this call immediately returns NULL.

This structure contains average performance statistics for the socket and incremental statistics
since the last call to x_sockstats(). Performance statistics include the following.

- send rate in Mbps
- recv rate in Mbps
- retransmit traffic as a fraction of total traffic
- round trip time

For a SOCK_DGRAM socket, configured for partial reliability, the performance statistics also
include the number of messages that expire after exceeding the QTTL limit.

int x_sockerror(X_SOCKET *skt)

Returns the error condition of socket skt. If skt is X_LAST_ERROR the last library wide error is
returned.

char * x_errortext(int err)

Returns a text description of the error code err.

size_t x_sendfile(X_SOCKET *skt, int fd, off_t offset, size_t size)

Mmap the file described by fd and send size bytes of data starting at offset. Returns the actual
number of bytes sent or -1 on error.

size_t x_send(X_SOCKET *skt, const void * buf, size_t len)

Send len bytes from buf on socket skt. Returns the actual number of bytes sent or -1 on error.

If skt is of type SOCK_DGRAM then the data is treated as a single message and len must be less
then the maximum message length. Messages greater than SNDSIZE are fragmented. On a fully
reliable socket messages will be delivered intact but may not arrive in the original order. On an
unreliable socket messages are either delivered intact or discarded. If the socket is configured for
partial reliability, message fragments will be retransmitted until no longer available in which case
the message will be discarded.

size_t x_recvfile(X_SOCKET *skt, int fd, off_t offset, size_t size)

Reads size bytes from socket skt writing them into the file described by fd at offset. Returns the
number of bytes read on success and -1 on error.

size_t x_recv(X_SOCKET *skt, void *buf, size_t len)

Read up to len bytes from socket skt into buf. If skt is of type SOCK_DGRAM then an entire
message is read into buf with bytes in excess of len being discarded. Returns the number of bytes
read on success and -1 on error.

void x_selectmark(X_SOCKET *skt, int mark)

Called prior to using x_select(), this function marks skt with the conditions to be tested by the
select call. Mark is a bitwise OR of X_READABLE, X_WRITABLE and X_EXCEPTION.

int x_selecttest(X_SOCKET *skt)

Returns the result of the x_select() call for skt. The return value will be a bitwise OR of
X_READABLE, X_WRITABLE and X_EXCEPTION depending on skt was marked and the

result of the x_select() call.

int x_select(int len, X_SOCKET **skts, struct timeval *timeout)

Returns the number of sockets in the array skts of length len that satisfy the marked conditions.
Timeout is the maximum time to wait before the call returns. If timeout is null the call blocks
indefinitely. A timeout value of zero can be used to effect a poll operation. Timeout is not changed
by the call. The call returns -1 on error.

