[image: image6.jpg][image: image6.jpg]

[image: image7.jpg]
[image: image7.jpg]

<Title>

<Subtitle>

<Deliverable Title>[image: image8.jpg]

13.03.08
eduGAIN Profiles and Implementation Guidelines
	Contractual Date:
	31/03/08

	Actual Date:
	13/03/08

	Contract Number:
	511082

	Instrument type:
	Integrated Infrastructure Initiative (I3)

	Activity:
	JRA5

	Work Item:
	WI2 (AAI)

	Nature of Deliverable:
	R

	Dissemination Level
	PU

	Lead Partner
	RedIRIS

	Document Code
	GN2-08-081

	Authors:
	Diego Lopez (RedIRIS), Juergen Rauschenbach (DFN), Andreas Solberg (UNINETT), Manuela Stanica (DFN), S. Winter (RESTENA), Cándido Rodríguez (RedIRIS).

Abstract

This document describes the eduGAIN trust model and the eduGAIN profiles in more detail to provide a consolidated specification well suited for the implementation. It is complementary to the AAI architecture and eduGAIN cookbook document.
Table of Contents

10
Executive Summary

21
Introduction

21.1
Notation

12
eduGAIN Trust Model

12.1
Component Identifiers

22.1.1
Examples

32.2
PKI Structure

32.3
Certificate Profiles

52.4
Certificate Policy and Policy Statement

52.5
CRL Profiles

62.6
Trust Validation Procedures

62.7
TLS Validation

62.8
XML Signature Validation

83
eduGAIN Profiles

83.1
Namespace Declarations and Values

103.2
Attribute errors

103.3
eduGAIN Basic Profile

103.3.1
SAML 1.1 Mapping

153.3.2
SAML 2.0 Mapping

203.4
REST Metadata Profile

203.4.1
The REST URL mapping

213.4.2
Securing communication with the MDS

213.4.3
Metadata trust relations and security considerations

213.4.4
Metadata Lookup

223.4.5
Metadata search

223.4.6
Publishing and updating metadata

233.4.7
Deleting metadata

233.4.8
Redirect

233.4.9
Errors

243.5
Web SSO Profile

243.5.1
SAML 1.1

253.5.2
SAML 2.0

253.6
Automated Client Profile

263.6.1
Processing Rules

273.7
User behind a Client Profile

283.8
Client in Web Container Profile

283.8.1
Processing Rules

293.8.2
SAML Constructs for Relayed Trust

354
References

36SAML 1.1 Mappings

36A.1
Authentication Service

36A.1.1
AuthenticationRequest

37A.1.2
AuthenticationResponse

37A.1.3
AuthenticationError

38A.2
Attribute Exchange Service

38A.2.1
AttributeRequest

38A.2.2
AttributeResponse

39A.2.3
AttributeError

39A.3
Authorisation Service

39A.3.1
AuthorizationRequest

40A.3.2
AuthorizationResponse

41A.3.3
AuthorizationError

42SAML 2.0 Mappings

42A.4
Authentication Service

42A.4.1
AuthenticationRequest

43A.4.2
AuthenticationResponse

43A.4.3
AuthenticationError

44A.5
Attribute Exchange Service

44A.5.1
AttributeRequest

44A.5.2
AttributeResponse

45A.5.3
AttributeError

45A.6
Authorisation Service

45A.6.1
AuthorizationRequest

46A.6.2
AuthorizationResponse

46A.6.3
AuthorizationError

Table of Figures

24Figure 4.1: Message flow in the WebSSO profile

26Figure 4.2: Message flow in the AC profile

27Figure 4.3: Message flow in the UbC profile

28Figure 4.4: Message flow in the WE profile

0 Executive Summary

The general architecture of eduGAIN is outlined in the AAI Architecture document (DJ5.2.2,2), supplemented with guidelines for potential users in the eduGAIN cookbook DJ5.2.3,2. This document provides detailed and authoritative technical information in what relates of the actual mapping of the eduGAIN architecture to protocols and concrete use. The profile section is foreseen to grow and new profiles may be added if accordant requirements evolve.

The currently specified profiles (besides to the eduGAIN Basic Profile and the Shibboleth similar Web SSO Profile)) are reflecting special needs raised from other GÉANT2 activities, JRA1 and JRA3 in particular. They are a result of common design work with these groups. During implementation of AAI functionality into the software built by JRA1 and JRA3 and test work with perfSONAR and AutoBAHN tools feedback will be of great value. One of the intentions to provide these specifications in a smaller document is to make changes easier to handle.
1 Introduction
This document provides a normative set of profiles and guidelines for the eduGAIN infrastructure, further refining those defined by Deliverable DJ5.2.2 [GN2DJ522]. Each profile is defined as the precise exchange of messages and the processing rules for these messages in a particular use case. Implementation guidelines aim to clarify those aspects not precise enough in the eduGAIN specification in order to simplify the development of the eduGAIN components and to guarantee their interoperability.

As an extension to the eduGAIN architecture specification, this document assumes a good knowledge of this architecture and of the different eduGAIN operations, parameters and procedures described there.

In the future, some content of this document may be incorporated into the next version of Deliverable DJ5.2.2 and the coming Deliverable on AAI best practices (the “cookbook”).

1.1 Notation

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in [RFC 2119]:

...they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)...

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behaviour that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural language sense.

Example code and listings of XML schemas appear like this.

When references to particular elements or attributes inside a SAML construct are made, their XPath [XPATH] specification into the corresponding SAML document will be used to avoid ambiguities.

2 eduGAIN Trust Model

A trust model is required to allow each eduGAIN component to assess the identity of its peer(s) during any interaction. This section describes this trust model, including the validation strategies for connections and signatures that must be followed. Trust will be established by mean of using TLS connections for each eduGAIN interaction and including XML-Sig digital signatures for the appropriate protocol elements and assertions.

eduGAIN inter-component trust will be supported by a Public Key Infrastructure (PKI) based on X.509 certificates. It will be rooted at a set of Certification Authorities (CA) created and maintained within the project. This set will be referred as the edUGAIN truststore and all eduGAIN components SHALL accept any of the CAs contained by the truststore as valid roots of trust. CAs in the eduGAIN trustsore MUST conform to the eduGAIN Certificate Policy, a document defining the rules and procedures agreed by the eduGAIN participants to rely on digital public certificates issued to the components of the infrastructure.

At least one of these CAs will be specifically established and run by the project. This root CA will be referred as the eduGAINCA. The self-signed certificate of the eduGAINCA SHALL be the minimum content of the eduGAIN truststore.

2.1 Component Identifiers

The general URI format prescribed in the architecture document to identify eduGAIN components (BEs, service providers, identity providers…) is too flexible to support the trans-federation trust model that eduGAIN is bound to provide. A set of restrictions on the format of the URIs and a standardized mapping to uniquely identify services is required to perform adequate certificate/service-identifier validation and to establish sound and manageable privacy preservation and access control rules.

Both identity and service providers (at the home and remote federations, respectively) do not have direct access to the certificates used during TLS peer validation, but they rather need to establish a dynamic trust link through the BE and the identifiers exchanged through MDS. The trust validation process is obviously enhanced (both in its processing and in its further auditing) by using identifiers with a formal, well-established format.

Therefore, all components exchanging eduGAIN messages and assertions MUST be identified according to the following rules:

· Identifiers SHALL be coded by means of URNs in the urn:geant:edugain:component namespace for those components included in the eduGAIN infrastructure.

· Identifiers SHALL establish the kind of component they apply to by means of the following predefined prefixes:

· urn:geant:edugain:component:mds for a Metadata Server.

· urn:geant:edugain:component:fpp for a Federation Peering Point.

· urn:geant:edugain:component:be for a Bridging Element.

· urn:geant:edugain:component:sp for a Service Provider.

· urn:geant:edugain:component:idp for an Identity Provider.

This list is only indicative. The exact relation of valid identifier prefixes MUST be retrieved from the eduGAIN name registry (https://registry.edugain.org/).

· Identifiers SHALL follow the hierarchy of the trust establishing process, up to the identifier of the participating federation.

· Identifiers for service providers MUST include a local service identifier, that MAY typically consist of the initial or root URL for the service.

Other infrastructures that make use of the eduGAIN trust fabric, such as eduroam RadSec [RADSEC] MAY mandate different component identifiers according to their own internal rules. These component identifiers MUST be used by the trust-establishing procedures according to the eduGAIN rules described in this document.

2.1.1 Examples

A typical MDS identifier should be like:

urn:geant:edugain:component:mds:galaxian

A typical FPP identifier should be like:
urn:geant:edugain:component:fpp:starfleet

A typical BE identifier should be like:

urn:geant:edugain:component:be:starfleet:enterprise

A typical SP identifier should be like:

urn:geant:edugain:component:sp:starfleet:captainlog:http://enterprise.starfleet.sf/logs/captain/

A typical IdP identifier should be like:

urn:geant:edugain:component:idp:starfleet:roll

2.2 PKI Structure

Each CA inside the eduGAIN truststore SHALL be accredited to issue certificates for components in a particular branch of the eduGAIN component identifier namespace. Certificates for components outside these branches SHALL be under the eduGAIN CA. The eduGAINCA SHALL only issue certificates to other CAs, and these subordinated CAs will in turn be responsible for issuing certificates to the individual components. The eduGAIN infrastructure SHALL provide at least one of these subordinated CAs, known as the eduGAINSCA.

[image: image1.png]
Figure 2.1: Structure of the the eduGAIN PKI

The eduGAINSCA MAY provide a set of separately managed Registration Authorities (RA), according to the management procedures of the different eduGAIN namespaces under its responsibility.

2.3 Certificate Profiles

All certificates issued by any CA within the eduGAIN PKI MUST conform to the Internet PKI profile (PKIX) for X.509 certificates as defined by RFC 3280. These CAs SHALL only issue X.509 v3 certificates.

The extensions to the X.509 v3 certificate that MUST be present in the certificates issued within the eduGAIN PKI will be:

· For eduGAIN component certificates:

· Basic Constraints (critical): ca: false

· Subject Key Identifier: <hash>
· Authority Key Identifier: <keyID>
· Key Usage (critical): digitalSignature, nonRepudiation, KeyEncipherment, dataEncipherment

· Extended Key Usage: serverAuth, clientAuth, emailProtection, codeSigning, timeStamping.

· CRL Distribution Points: <URI>

· Certificate Policies: <OID>
· Subject Alternate Name: The appropriate eduGAIN component identifier(s), stored by means of the uniformResourceIdentifier field, as defined by RFC 3280. Since current interpretations of RFC3280 only allow URIs in the form of URLs and eduGAIN component identifiers are URNs, each one of them MUST be encoded inside a resolver URL, using URL
escape conventions:

http://registry.edugain.org/resolver?urn=<URL-escaped eduGAIN CId>

· For CA certificates:

· Basic Constraints (critical): ca: true

· Subject Key Identifier: <hash>

· Authority Key Identifier: <keyID>

· Key Usage (critical): digitalSignature, nonRepudiation, KeyCertSign, cRLSign

· Extended Key Usage: timeStamping

· CRL Distribution Points: <URI>
· Certificate Policies: <OID>

The OIDs for algorithms used for signatures of certificates issued by the CAs within the eduGAIN PKI MUST be as follows:

· Hash function: id-sha1 1.3.14.3.2.26

· Encryption: rsaEncryption 1.2.840.113549.1.1.1

· Signature: sha1WithRSAEncryption 1.2.840.113549.1.1.5

Each entity MUST have a unique and unambiguous Distinguished Name (DN) in all the certificates issued to the same entity by its correspondent CA. The DN MUST be structured as defined by ITU-T Standards Recommendation X.501.

The eduGAINCA SHALL have the DN:

DC=net, DC=geant, CN=eduGAINCA

The eduGAINSCA SHALL have the DN:

DC=net, DC=geant, CN=eduGAINSCA

eduGAIN components SHALL have the DN:

DC=net, DC=geant, O=<WellKnownFederationName>, CN=<FQDN>

The value of WellKnownFederationName will be derived from the federation identifier within its community. Conflicts in naming SHOULD be mediated by the eduGAIN PKI responsibles.

Where the value of FQDN SHOULD correspond to the FQDN used by the eduGAIN interface(s) of the component. As a component may well provide eduGAIN interfaces through different network interfaces (corresponding to different FQDN), trust evaluation MUST NOT be based on the certificate subject DN.

2.4 Certificate Policy and Policy Statement

In the current status of the eduGAIN infrastructure, the CP/CPS of the eduGAINCA is reduced to the following definition:

“The eduGAINCA only issues certificates for the Subject DN of the eduGAINSCA: DC=net, DC=geant, CN=eduGAINSCA according to the guidelines stated in this section. The certificates will contain the following OID in their CertifcatePolicies extension: 1.3.6.1.4.1.27262.1.12.3.1.0”

The CP/CPS of the eduGAINSCA, according to RFC 2527, is defined in a separate document [CPCPS].

When other CAs will require to be signed by the eduGAIN, there SHALL be a formally defined CP/CPS, according to RFC 2527. All the CAs within the eduGAIN PKI MUST conform to this CP/CPS. The above-mentioned CP/CPS for eduGAINSCA SHOULD be used as guideline for the candidate CAs policy documents.

2.5 CRL Profiles

All CAs within the eduGAIN PKI MUST create and publish X.509 v2 CRLs. Complete CRLs SHALL be issued, independently of the reason for the revocation. The reason for the revocation SHALL NOT be included in the individual CRL entries.

The CRLs SHALL include the date by which the next CRL is to be issued. A new CRL SHALL be issued before this date if new revocations are issued. The CRL extensions that SHALL be included are:

· • The Authority Key Identifier.

· • The CRL Number.

The CRL entry extensions that SHALL be included are:

· • Invalidity Date.

2.6 Trust Validation Procedures

Trust validation MUST be performed by eduGAIN components according to a two-step procedure:

1. The received certificate SHALL be evaluated to check whether the whole trust path correctly resolves to the root(s) of trust defined for the eduGAIN component.

The eduGAIN component identifier contained in the Subject Alternate Name extension of the received certificate matches with the component identifier associated to the contacted interface by the metadata held by the evaluating component.

A failure in any of the verifications above SHALL cause a reject of the requested operation with a TrustError result.

This procedure implies that, for a proper trust evaluation, all metadata exchange through the MDS MUST contain the eduGAIN component identifiers applicable in each case.

2.7 TLS Validation

Unless otherwise specified in the corresponding profile, all connections between any two eduGAIN components MUST use TLS and perform two-way certificate validation (both initiator and responder) according to the procedures described in the previous section. Subject DNs of the peer validated certificates (and eduGAIN component identifiers as validated in step 2 above) MUST be included as part of the component logs, and trust paths for the validation SHOULD be included as part of the logs as well.

2.8 XML Signature Validation

XML Signatures MUST be used in the following SAML constructs:

· Assertions containing one SAML AuthenticationStatement and (optionally) several SAML AttributeStatement in response to an eduGAIN AuthenticationRequest.

XML Signatures SHOULD be used in the following SAML constructs:

· Assertions containing SAML AttributeStatement in response to an eduGAIN AttributeRequest.
Validation of the certificates associated with XML Signatures MUST follow the procedures described in section 3.6. Subject DNs of the issuing party’s validated certificates (and eduGAIN component identifiers as validated in step 2) MUST be included as part of the component logs, and trust paths for the validation SHOULD be included as part of the logs as well.

With respect to trust validation, components inside non-SAML-enabled architectures connected through eduGAIN have no other alternative but to trust their BEs and FPPs without any further checking. However, when dealing with SAML-enabled SPs and/or IdPs that use XML signatures instead of (or in addition to) TLS-based trust, it could be possible to use additional checks, allowing end-to-end trust establishment at the price of reducing transparency and (possibly) scalability.

Anyway, since these end-to-end trust checkings may be of interest in several use cases, the BEs SHOULD NOT strip the signatures received from the providers connected through them, but rather add their own signature when required.

3 eduGAIN Profiles

The eduGAIN profiles consist of a basic profile mapping the eduGAIN service definition onto SAML 1.1 and SAML 2.0, and a number of additional profiles related to special user requirements. While the Web SSO profiles are essentially equivalent to their Shibboleth counterparts, the other profiles are partly without direct user interaction and partly not using HTTP based services. These additional profiles are designed in cooperation with other GN2 activities, for example perfSONAR (see [DJ1.2.4]).

3.1 Namespace Declarations and Values

Specific eduGAIN elements and attributes MUST use the urn:geant:edugain namespace, in particular:

urn:geant:edugain:protocol for protocol elements.

urn:geant:edugain:assertion for assertion components.
Along this section, namespaces will be used for schema fragments according with the following definitions:

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
xmlns:saml1="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:ega="urn:geant:edugain:assertion"

targetNamespace="urn:geant:edugain:assertion">
Return (result and error code) values in any SAML binding for the eduGAIN operations MUST use strings from a controlled vocabulary, as specified in the architecture specification document. These data are transferred using the attribute //Response/Status/StatusCode/StatusCode@Value inside a SAML <Response>. eduGAIN implementations MUST comply with the following schema fragment:

<xs:restriction base="xs:QName">

<xs:enumeration value="Ok" />

<xs:enumeration value="ConnectTo" />

<xs:enumeration value="RedirectUserTo" />

<xs:enumeration value="InvalidCredentials" />

<xs:enumeration value="UnknownHomeSite" />

<xs:enumeration value="InsufficientData" />

<xs:enumeration value="Accept" />

<xs:enumeration value="Deny" />

</xs:restriction>

Following the OASIS SAML specifications, the eduGAIN architecture defines in addition the use of different references inside the SAML elements:

· //Subject/SubjectConfirmation//ConfirmationMethod for SAML 1.1

· //Subject/SubjectConfirmation@Method for SAML 2.0

The values inside these constructs (referred as ConfMethod below) SHALL be used in combination with specific XML content inside //Subject/SubjectConfirmation/SubjectConfirmationData in order to map different abstract operations parameters. eduGAIN implementations MUST comply with the following rules:

· For HomeLocators, the value urn:geant:edugain:reference:homelocator SHALL be used for the corresponding ConfMethod and there SHALL be an element inside //Subject/SubjectConfirmation/SubjectConfirmationData complying with the following schema fragment:

· For SAML 1.1

<xs:element name="HomeLocators" type="ega:HomeLocatorType">

</xs:element>

<xs:complexType name="HomeLocatorType">

<xs:complexContent>

<xs:sequence>

<xs:element ref="saml1:Attribute" maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexContent>

</xs:complexType>
· For SAML 2.0

<xs:element name="HomeLocators" type="ega:HomeLocatorType">

</xs:element>

<xs:complexType name="HomeLocatorType">

<xs:complexContent>

<xs:sequence>

<xs:element ref="saml2:Attribute" maxOccurs=”unbounded”/>

</xs:sequence>

</xs:complexContent>

</xs:complexType>
· For CacheReference, the value urn:geant:edugain:reference:cache SHALL be used for the corresponding ConfMethod and there SHALL be an element inside //Subject/SubjectConfirmation/SubjectConfirmationData complying with the following schema fragment:

<xs:element name="CacheReference" type="string"/>

· For AttributeAuthority, the value in urn:geant:edugain:reference:attributeAuthority SHALL be used for the corresponding ConfMethod and there SHALL be an element inside //Subject/SubjectConfirmation/SubjectConfirmationData complying with the following schema fragment:

<xs:element name="AttributeAuthority" type="anyURI"/>

3.2 Attribute errors

When certain attributes from those requested by an eduGAIN BE cannot be disclosed by the home BE for whatever reason (either because of ARP rules, schema or namespace mismatch, unavailability, etc.) the responding BE SHALL NOT signal this in any specific way to the requesting BE, but silently omit them from the corresponding AttributeResponse. This introduces an additional level of privacy protection, since otherwise the requesting BE could obtain non-legitimate information about user preferences or data availability at their home IdP.

3.3 eduGAIN Basic Profile

This profile SHALL be the default profile to be used for access to the eduGAIN service definition. It consists of a (almost) direct mapping of the eduGAIN abstract service definition onto SAML over SOAP/HTTP/TLS channel, with the exception of the Metadata Service, which follows a specific profile described in the following section.

This document includes two different mappings, for SAML 1.1 and SAML 2.0. For backwards compatibily reasons, the SAML 1.1 SHALL be considered the default one, until a complete deployment of the SAML 2.0 eduGAIN infrastructure is achieved.

3.3.1 SAML 1.1 Mapping

The SAML 1.1 mapping of the eduGAIN operations for Authentication, Attribute Exchange and Authorisation is done according to the following rules:

2. All Requests are conveyed as SAML Request elements.

3. All Responses are conveyed as SAML Response elements.

4. Error responses are distinguished from other responses by means of their main StatusCode element (//Response/Status/StatusCode@Value), where:

· Regular responses hold the value Success

· Error responses hold either the value Responder or the value Requester, according to their errorReason (see below).

5. The Result element inside Response messages is provided by means of a secondary StatusCode element (//Response/Status/StatusCode/StatusCode@Value), using the vocabularies described in the previous section for each operation. These vocabularies shall be inside the specific eduGAIN namespace. Particular operations may use the same (or any other) code inside their elements to simplify parsing and/or logging of their results.

6. errorReason inside error responses is provided by means of a secondary StatusCode element (//Response/Status/StatusCode/StatusCode@Value), using the vocabularies described in the previous section for each operation. These vocabularies shall be inside the specific eduGAIN namespace.

7. RequestID inside Requests is provided by means of the RequestID attribute (//Request@RequestID). The values of this attribute will be coded according to the eduGAIN URN namespace, identifying the abstract operation and the BE or user element issuing the request.

8. ResponseID inside Responses is provided by means of the ResponseID attribute (//Response@ResponseID). The values of this attribute will be coded according to the eduGAIN URN namespace, identifying the abstract operation and the BE or user element issuing the response.

9. ProducerID in Requests is mapped to the SubjectAlternateName extension of the certificate used by the requester in the TLS connection (as described in section 3.6.)

10. ConsumerID in Requests is mapped to the SubjectAlternateName extension of the certificate used by the responder in the TLS connection (as described in section 3.6.).

11. ProducerID in Responses is mapped to the SubjectAlternateName extension of the certificate used by the responder in the TLS connection (as described in section 3.6.) or XML signature (as described in section 3.7).

12. ConsumerID in Responses is provided by means of the Audience element inside the Conditions element in the corresponding SAML assertions (//Response/Assertion/Conditions/AudienceRestrictionCondition/Audience)

13. NotBefore inside Responses is provided by means of the NotBefore attribute of the Conditions element in the corresponding SAML assertions (//Response/Assertion/Conditions@NotBefore).

14. NotAfter inside Responses is provided by means of the NotOnOrAfter attribute of the Conditions element in the corresponding SAML assertions (//Response/Assertion/Conditions@NotOnOrAfter)

15. InResponseTo inside Responses is provided by means of the InResponseTo attribute (//Response@InResponseTo).

16. Referred inside Requests (when required) are coded through the Referrer: HTTP(S) header

17. AdditionalData inside Responses must be provided by means of the StatusDetail element (//Response/Status/StatusDetail).

errorMessage inside error messages must be provided by means of StatusMessage element (//Response/Status/StatusMessage).

The following sections define the particular rules for mapping the rest of components of eduGAIN operations into SAML constructs.

3.3.1.1 Authentication Protocol

The AuthenticationRequest parameters are mapped as follows:
· AuthenticationType maps to the ConfirmationMethod element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthenticationQuery/Subject/SubjectConfirmation/ConfirmationMethod
· [AuthenticatingPrincipal] maps to the content of the NameIdentifier element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthenticationQuery/Subject/NameIdentifier

· [AuthenticationMethod] maps to the AuthenticationMethod attribute (of type anyURI) of AuthenticationQuery:
//Request/AuthenticationQuery@AuthenticationMethod
· [HomeLocators] maps to:
· An additional ConfirmationMethod element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthenticationQuery/Subject/SubjectConfirmation/
ConfirmationMethod
The URN identifying this parameter is urn:geant:edugain:reference:homelocator.

· Specific contents of the SubjectConfirmationData element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject. These contents will be inside an specific XML element named HomeLocators in the eduGAIN mamespace:

//Request/AuthenticationQuery/Subject/SubjectConfirmation/
SubjectConfirmationData/HomeLocators
Each individual locator consists of an attribute-value pair. The whole set of locators is coded as a SAML AttributeStatement. Specific eduGAIN profiles can mandate the use of concrete attributes as HomeLocators.

· [HomeSite] maps to the optional NameQualifier attribute of the NameIdentifier element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthenticationQuery/Subject/NameIdentifier@NameQualifier

· [CacheReference] maps to:
· An additional ConfirmationMethod element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthenticationQuery/Subject/SubjectConfirmation/
ConfirmationMethod
The URN identifying this parameter is urn:geant:edugain:reference:cache.

· Specific content of the SubjectConfirmationData element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject. This content will be inside an specific XML element named CacheReference in the eduGAIN mamespace:

//Request/AuthenticationQuery/Subject/SubjectConfirmation/
SubjectConfirmationData/CacheReference

An eduGAIN AuthenticationResponse is mapped to a SAML Response containing two SAML Assertion elements: the first (mandatory) one must contain an AuthenticationStatement, while the second (optional) may contain an AttributeStatement. The parameters are mapped as follows:

· [SubjectHandle] is carried by the AuthenticationStatement in its Subject/NameIdentifier element: //Response/Assertion/AuthenticationStatement/Subject/NameIdentifier
· [AttributeValueList] is carried by the AttributeStatement in an unbounded sequence of Attribute elements: //Response/Assertion/AttributeStatement
· [Interfaces] maps to //Response/Status/StatusMessage (of type string).
3.3.1.2 Attribute Exchange Protocol

The AttributeRequest is encoded using the SAML 1.1 //Request/AttributeQuery element. The bindings of the specific parameters are:

· SubjectHandle maps to the SAML 1.1 Subject element, using its /Subject/NameIdentifier child.
· [Resource] maps to //Request/AttributeQuery@Resource

· [AttributeNameList] maps to an unbounded number of AttributeDesignator elements in the SAML 1.1 AttributeQuery element.

· [HomeSite] maps to the optional NameQualifier attribute of the NameIdentifier element contained by AuthenticationQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject: //Request/AttributeQuery/Subject/NameIdentifier@NameQualifier
· [CacheReference] maps to:
· A ConfirmationMethod element contained by AttributeQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AttributeQuery/Subject/SubjectConfirmation/
ConfirmationMethod
The URN identifying this parameter is urn:geant:edugain:reference:cache.

· Specific content of the SubjectConfirmationData element contained by AttributeQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject. This content will be inside an specific XML element named CacheReference in the eduGAIN mamespace:

//Request/AttributeQuery/Subject/SubjectConfirmation/

SubjectConfirmationData/CacheReference

The AttributeResponse is encoded using the SAML 1.1 AttributeStatement element, i.e. //Response/Assertion/AttributeStatement

The bindings of the (specific) parameters are:

· AttributeValueList maps to //Response/Assertion/AttributeStatement, containing an unbounded sequence of Attribute elements.

· [SubjectHandle] is carried by the AttributeStatement in its Subject/NameIdentifier element: //Response/Assertion/AttributeStatement/Subject/NameIdentifier
· [Interfaces] maps to //Response/Status/StatusMessage (of type string).
3.3.1.3 Authorisation Protocol

eduGAIN will use the SAML AuthorizationDecisionQuery element and will transport all of the service primitives for an AuthorizationRequest as follows:

· Resource directly maps to the attribute Resource, located at //AuthorizationDecisionQuery@Resource

· Action directly maps to the element Action, located at //AuthorizationDecisionQuery/Action
Only a limited enumeration of strings is allowed for this element.

· AttributeValueList is part of the AttributeStatement element, XPath:
//Request/AuthorizationDecisionQuery/Evidence/Assertion/AttributeStatement, which has an arbitrary number of Attribute child elements that carry the attribute information in an attribute named AttributeName and a child AttributeValue.

· [PolicyReference] maps to the optional element Advice, found under the XPath:
//AuthorizationDecisionQuery/Evidence/Assertion/Advice
· [CacheReference] maps to:
· A ConfirmationMethod element contained by AuthorizationDecisionQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/
 ConfirmationMethod
The URN identifying this parameter is urn:geant:edugain:reference:cache.

· Specific content of the SubjectConfirmationData element contained by AuthorizationDecisionQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject. This content will be inside an specific XML element named CacheReference in the eduGAIN mamespace:

//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/

SubjectConfirmationData/CacheReference
· [SubjectHandle] maps to the subject identifier in the SAML request: //Request/AuthorizationDecisionQuery/Subject/NameIdentifier
· [AttributeAuthority] maps to:
· A ConfirmationMethod element contained by AuthorizationDecisionQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject:
//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/
 ConfirmationMethod
The URN identifying this parameter is urn:geant:edugain:reference:attributeAuthority
· Specific content of the SubjectConfirmationData element contained by AuthorizationDecisionQuery, as an extension of the abstract element SubjectQuery, inside the specific element Subject. This content will be inside an specific XML element named AttributeAuthority in the eduGAIN mamespace:

//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/

 SubjectConfirmationData/AttributeAuthority
All the relevant information for an AuthorizationResponse is carried within the SAML AuthorizationDecisionStatement and the Response element. The mappings from the abstract parameters to the message parts herein are as follows:

· Resource is mapped in the same way as in the request.

· Action elements are carried similar as in the request; it is however possible that not all requested actions are also present in the response. This means that only the subset of actions that is present in the response is authorised.

· Result is (as described in the introductory part of the chapter) contained in a secondary StatusCode element. The following rules apply:
· The top-level //Response/Status/StatusCode element contains the value “Success” from the SAML namespace
· The secondary element at //Response/Status/StatusCode/StatusCode can have one of the following values:
· Accept: this means that the authorisation had a positive outcome. The details of the authorised actions are contained in the message body. In addition to this StatusCode value, the attribute
Decision in the Statement element at: //Response/AuthorizationDecisionStatement@Decision contains the value Permit
· Deny: this means that the authorisation had a negative outcome. The details of the actions are
contained in the message body. In addition to this StatusCode value, the attribute Decision in the Statement element at:
//Response/AuthorizationDecisionStatement@Decision contains the value Deny
· ConnectTo: it was not possible to generate an authoritative decision. Instead, the request has to be delegated. In this case, the above mentioned Decision attribute contains the value
Indeterminate and the URI of the authorisation service to which the resource is delegated is
contained in the StatusMessage element at //Response/Status/StatusMessage
· InvalidCredentials: This StatusCode value implies a Decision attribute of Deny
3.3.2 SAML 2.0 Mapping

The SAML 2.0 mapping of the eduGAIN operations for Authentication, Attribute Exchange and Authorisation is done according to the following rules:

· All Requests are conveyed as SAML Request elements.

· All Responses are conveyed as SAML Response elements.

· Error responses are distinguished from other responses by means of their main StatusCode element (//Response/Status/StatusCode@Value), where:

· Regular responses hold the value urn:oasis:names:tc:SAML:2.0:status:Success

· Error responses hold either the value urn:oasis:names:tc:SAML:2.0:status:Responder or the value urn:oasis:names:tc:SAML:2.0:status:Requester, according to their errorReason (see below).

· The Result element inside Response messages is provided by means of a secondary StatusCode element (//Response/Status/StatusCode/StatusCode@Value), using the vocabularies described in the previous section for each operation. These vocabularies SHALL be inside the specific eduGAIN namespace. Particular operations MAY use the same (or any other) code inside their elements to simplify parsing and/or logging of their results.

· errorReason inside error responses is provided by means of a secondary StatusCode element (//Response/Status/StatusCode/StatusCode@Value), using the vocabularies described in the previous section for each operation. These vocabularies SHALL be inside the specific eduGAIN namespace.

· RequestID inside Requests is provided by means of the ID attribute (//Request@ID). The values of this attribute SHALL be coded according to the eduGAIN URN namespace, identifying the abstract operation and the BE or user element issuing the request.

· ResponseID inside Responses is provided by means of the ID attribute (//Response@ID). The values of this attribute SHALL be coded according to the eduGAIN URN namespace, identifying the abstract operation and the BE or user element issuing the response.

· ProducerID in Requests is mapped to the Issuer element of the corresponding SAML Request element. The values of this attribute SHALL correspond to an eduGAIN BE and coded according to the eduGAIN URN namespace (//Request/Issuer).

· ConsumerID in Requests is provided by means of the Destination attribute of the corresponding SAML Request element. The values of this attribute SHALL correspond to an eduGAIN BE and coded according to the eduGAIN URN namespace (//Request@Destination).

· ProducerID in Responses is mapped to the Issuer element of the corresponding SAML Response element. The values of this attribute SHALL correspond to an eduGAIN BE and coded according to the eduGAIN URN namespace (//Response/Issuer).

· ConsumerID in Responses is provided by means of the Destination attribute of the corresponding SAML Response element. The values of this attribute SHALL correspond to an eduGAIN BE and coded according to the eduGAIN URN namespace (//Response@Destination).

· NotBefore inside Responses is provided by means of the NotBefore attribute of the Conditions element in the corresponding SAML assertions (//Response/Assertion/Conditions@NotBefore).

· NotAfter inside Responses is provided by means of the NotOnOrAfter attribute of the Conditions element in the corresponding SAML assertions (//Response/Assertion/Conditions@NotOnOrAfter)

· InResponseTo inside Responses is provided by means of the InResponseTo attribute (//Response@InResponseTo).

· Referred inside Requests (when required) are coded through the Referrer: HTTP(S) header

· AdditionalData inside Responses must be provided by means of the StatusDetail element (//Response/Status/StatusDetail).

· errorMessage inside error messages must be provided by means of StatusMessage element (//Response/Status/StatusMessage).

The following sections define the particular rules for mapping the rest of components of eduGAIN operations into SAML constructs.

3.3.2.1 Authentication Protocol

eduGAIN AuthenticationRequest is provided by SAML 2.0 AuthnRequest, with parameters mapped as follows:
· AuthenticationType maps to content of the NameIDPolicy element of AuthnRequest:
//AuthnRequest/NameIDPolicy
· [AuthenticatingPrincipal] maps to the content of the NameID element inside the specific element Subject:
//AuthnRequest/Subject/NameID

· [AuthenticationMethod] maps to the content of the RequestedAuthnContext element of AuthnRequest:
//AuthnRequest/RequestedAuthnContext
· [HomeLocators] maps to the content of a SubjectConfirmation element contained by the specific element Subject :

//AuthnRequest/Subject/SubjectConfirmation

The value of the Method attribute of this element SHALL be

urn:geant:edugain:reference:homelocator.

The SubjectConfirmationData element contained by SubjectConfirmation SHALL hold a specific XML element named HomeLocators in the eduGAIN mamespace:

//AuthnRequest/Subject/SubjectConfirmation/SubjectConfirmationData/HomeLocators

Each individual locator consists of an attribute-value pair. The whole set of locators is coded as a SAML AttributeStatement. Specific eduGAIN profiles can mandate the use of concrete attributes as HomeLocators.

· [HomeSite] maps to the optional NameQualifier attribute of the NameID element contained by AuthnRequest, inside the specific element Subject:
//AuthnRequest/Subject/NameID@NameQualifier
· [CacheReference] maps to the content of a SubjectConfirmation element contained by the specific element Subject :

//AuthnRequest/Subject/SubjectConfirmation

The value of the Method attribute of this element SHALL be

urn:geant:edugain:reference:cache

The SubjectConfirmationData element contained by SubjectConfirmation SHALL hold a specific XML element named CacheReference in the eduGAIN mamespace:

//AuthnRequest/Subject/SubjectConfirmation/SubjectConfirmationData/CacheReference

An eduGAIN AuthenticationResponse is mapped to a SAML Response containing two SAML Assertion elements: the first (mandatory) one MUST contain an AuthnStatement, while the second (optional) MAY contain an AttributeStatement. The parameters are mapped as follows:

· [SubjectHandle] is carried by the NameID element in the Subject specific element of the assertion: //Response/Assertion/Subject/NameID
· [AttributeValueList] is carried by the AttributeStatement in an unbounded sequence of Attribute elements: //Response/Assertion/AttributeStatement
· [Interfaces] maps to //Response/Status/StatusMessage (of type string).
3.3.2.2 Attribute Exchange Protocol

The AttributeRequest is encoded using the SAML 2.0 //Request/AttributeQuery element. The bindings of the specific parameters are:

· SubjectHandle maps to the SAML 2.0 Subject element, using its NameID child:
//Request/AttributeQuery/Subject/NameID
· [AttributeNameList] maps to an unbounded number of Attribute elements in the SAML 2.0 AttributeQuery element.

· [CacheReference] maps to the content of a SubjectConfirmation element contained by the specific element Subject: //Request/AttributeQuery/Subject/SubjectConfirmation

The value of the Method attribute of this element SHALL be urn:geant:edugain:reference:cache The SubjectConfirmationData element contained by SubjectConfirmation SHALL hold a specific XML element named CacheReference in the eduGAIN mamespace: //Request/AttributeQuery/Subject/SubjectConfirmation/SubjectConfirmationData/CacheReference
· [HomeSite] maps to the optional NameQualifier attribute of the NameID element contained by AttributeQuery, inside the specific element Subject:
//Request/AttributeQuery/Subject/NameID@NameQualifier

The AttributeResponse is encoded using the SAML 2.0 AttributeStatement element, i.e. //Response/Assertion/AttributeStatement

The bindings of the (specific) parameters are:

· AttributeValueList maps to //Response/Assertion/AttributeStatement, containing an unbounded sequence of Attribute elements.

· [SubjectHandle] is carried by the Assertion in its Subject/NameID element: //Response/Assertion/Subject/NameIdentifier
· [Interfaces] maps to //Response/Status/StatusMessage (of type string).
3.3.2.3 Authorisation Protocol

eduGAIN will use the SAML AuthzDecisionQuery element and will transport all of the service primitives for an AuthorizationRequest as follows:

· Resource directly maps to the attribute Resource, located at //Request/AuthzDecisionQuery@Resource

· Action directly maps to the element Action, located at //Request/AuthzDecisionQuery/Action
Only a limited enumeration of strings is allowed for this element.

· AttributeValueList is part of the AttributeStatement element, XPath:
//Request/AuthzDecisionQuery/Evidence/Assertion/AttributeStatement, which has an arbitrary number of Attribute child elements that carry the attribute information in an attribute named AttributeName and a child AttributeValue.

· [PolicyReference] maps to the optional element Advice, found under the XPath:
//Request/AuthzDecisionQuery/Evidence/Assertion/Advice

· [CacheReference] maps to the content of a SubjectConfirmation element contained by the specific element Subject: //Request/AuthzDecisionQuery/Subject/SubjectConfirmation
The value of the Method attribute of this element SHALL be urn:geant:edugain:reference:cache The SubjectConfirmationData element contained by SubjectConfirmation SHALL hold a specific XML element named CacheReference in the eduGAIN mamespace: //Request/AuthzDecisionQuery/Subject/SubjectConfirmation/SubjectConfirmation
 Data/CacheReference
· [SubjectHandle] maps to the subject identifier in the SAML request: //Request/AuthzDecisionQuery/Subject/NameIdentifier
· [AttributeAuthority] maps to the content of a SubjectConfirmation element contained by the specific element Subject: //Request/AuthzDecisionQuery/Subject/SubjectConfirmation
The value of the Method attribute of this element SHALL be urn:geant:edugain:reference:attributeAuthority. The SubjectConfirmationData element contained by SubjectConfirmation SHALL hold a specific XML element named AttributeAuthority in the eduGAIN mamespace:

//Request/AuthzDecisionQuery/Subject/SubjectConfirmation/
 SubjectConfirmationData/AttributeAuthority

All the relevant information for an AuthorizationResponse is carried within the SAML AuthzDecisionStatement and the Response element. The mappings from the abstract parameters to the message parts herein are as follows:

· Resource is mapped in the same way as in the request.

· Action elements are carried similar as in the request; it is however possible that not all requested actions are also present in the response. This means that only the subset of actions that is present in the response is authorised.

· Result is (as described in the introductory part of the chapter) contained in a secondary StatusCode element. The following rules apply:
· The top-level //Response/Status/StatusCode element contains the value “Success” from the SAML namespace
· The secondary element at //Response/Status/StatusCode/StatusCode can have one of the following values:
· Accept: this means that the authorisation had a positive outcome. The details of the authorised actions are contained in the message body. In addition to this StatusCode value, the attribute
Decision in the Statement element at: //Response/AuthzDecisionStatement@Decision contains the value Permit
· Deny: this means that the authorisation had a negative outcome. The details of the actions are
contained in the message body. In addition to this StatusCode value, the attribute Decision in the Statement element at:
//Response/AuthzDecisionStatement@Decision contains the value Deny
· ConnectTo: it was not possible to generate an authoritative decision. Instead, the request has to be delegated. In this case, the above mentioned Decision attribute contains the value
Indeterminate and the URI of the authorisation service to which the resource is delegated is
contained in the StatusMessage element at //Response/Status/StatusMessage
· InvalidCredentials: This StatusCode value implies a Decision attribute of Deny
3.4 REST Metadata Profile

The MDS is used by the bridging elements to determine the home interfaces where an authentication or attribute request can be satisfied, and to establish trust among these interfaces and the requesting element. In the case where the appropriate home location is known and trust is established, this service is not used.

An MDS that conforms with this profile SHALL deal with the metadata information model as defined in the SAML 2.0 Metadata specification [SAMLMD]. To lookup, search for and publish metadata the eduGAIN component MUST use the REST protocol. REST fits the MDS model well and is simple. It also has the benefit of being compatible with other systems using HTTP to retrieve metadata from a location stored in DNS [SAMLMD], and at the same time adding support for sophisticated searching and publishing.

3.4.1 The REST URL mapping

The URL where the metadata can be found is composed of three parts:

· The MDS base URL: This includes a protocol (HTTP or HTTPS), the hostname of the MDS, the port and the deployment path. Example: https://mds.edugain.org/
· The federation ID: This is the identifier of a federation. All the meta data for the federation is located within this URL. Example: uninett
· The entity ID: This is the identifier of a specific bridging element. If this value is set, the federation ID must also be set, because the entity ID is only unique within a federation. Example: uio.no
· The query string: The query string is used in a search. The query string consist of one or more home location indicator attributes and values, separated by “&”. The attributes and values are URL encoded. Example: authenticationMethod=password&homedomain=uio.no
Depending on the type of operation performed, various combinations of these parts are to be used according to the following syntax:

<MDS base URL>[/<federation ID>[/<entity ID>]][?<query string>].
3.4.2 Securing communication with the MDS

The MDS server(s) will have their own eduGAIN server certificate(s). Users of the MDS SHOULD validate this certificate up to the eduGAIN roots of trust, and verify that the MDS component identifier is valid.

To perform a metadata lookup or a metadata search the client is not required to authenticate towards the MDS. To publish metadata, the client (BE or FPP) must authenticate using a valid FPP or BE certificate.

3.4.3 Metadata trust relations and security considerations

Even though the MDS holds all the metadata documents providing the trust foundation in the confederation, no significant trust SHOULD be assigned to the MDS itself. The MDS is trusted by the eduGAIN entities to forward metadata, but not to issue metadata. Consequently the MDS will never sign any metadata itself, but forward signatures from the publishers.

Since the MDS is only trusted to forward metadata, compromising the MDS will not allow injection of altered metadata documents. However compromising the MDS may deny publishers the possibility of performing updates, and hence allow distribution of old documents to the metadata consumers.

Signing of metadata is optional from the MDS point of view, but eduGAIN publishers are required to sign metadata. eduGAIN metadata consumers will treat all entities associated with non-signed eduGAIN metadata as non-existent.

Signing can be performed at two levels, at the EntityDescriptor level or at the EntitiesDescriptor level. eduGAIN publishers must sign at EntityDescriptor level, but the MDS will also support distributing metadata that is signed at the EntitiesDescriptor level. This is of particular interest to obtain Shibboleth compatibility, because Shibboleth is using the extensions field at EntitiesDescriptor level to store a list of certificates. To Shibboleth entities it may be important to keep this list signed. eduGAIN MDS consumers MUST understand EntityDescriptor level signatures, and MAY understand signatures at the EntitiesDescriptor level.

3.4.4 Metadata Lookup

A metadata lookup is done via the HTTP GET command. If the requested URL is composed of the MDS base, the federation ID and the entity ID, the MDS will return metadata for one specific bridging element in an EntityDescriptor.

The MDS can return a list of all bridging elements within a federation when the request URL is composed of only the MDS base and the federation ID. In this case an EntitiesDescriptor is returned including one EntityDescriptor for each bridging element.

The MDS can also return the list of all bridging elements of all federations by using only the MDS base URL in the query. In this case an EntitiesDescriptor is returned including one EntityDescriptor for each bridging element. Users of this operation are strongly advised to implement caching, since retrieving such big amount of data would add delay and may impact performance of the MDS.

3.4.5 Metadata search

To perform a search it is necessary to define the search scope and add one or more home locators (HLs). The scope can be either global, by using the MDS base URL, or local to a federation by using the MDS base with the federation ID.

The MDS currently supports three types of HLs:

· Home domain: a domain name indicating the user’s home location

· URN: a value encoded in URN format; mainly intended for eduGAIN component identifiers

· NetID: an e-mail like identifier in the form of localPart@FQDN, although not necessarily a valid e-mail address of any kind.

The result of a search will always be an EntitiesDescriptor even if the search only returns one entity.

3.4.6 Publishing and updating metadata

In order to publish or update metadata, the HTTP POST and PUT operations are used respectively. One single metadata document MUST be attached in the HTTP body encoded with MIME type application/x-www-form-urlencoded. Furthermore, there are differences depending on whether metadata is published for a single entity or for a full federation, and whether the publisher is an FPP or a BE.

3.4.6.1 Publishing and updating metadata for a full federation

Only an FPP is allowed to publish metadata for a full federation. When doing so, the FPP always sends an EntitiesDescriptor document. It is optional to include an EntitiesDescriptor@Name attribute, but if it exists it SHOULD be identical to the federation ID. The document MUST be sent to a federation level URL (such as http://mds.ladok.umu.se/fedX). The MDS MUST validate the certificate of the FPP and verify that the federation ID from the FPP component ID in the certificate matches to the federation ID in the URL, and also to the one within the relevant fields: EntitiesDescriptor@Name (if present) and EntityDescriptor@EntityID.

To publish metadata for a full federation, the FPP must use the HTTP POST operation to send a document containing an EntitiesDescriptor. From the MDS point of view, the document can be signed at EntityDescriptor level or at EntitiesDescriptor level. eduGAIN publishers MUST sign metadata on EntityDescriptor level. If metadata is published for a federation that already exists at the MDS, the MDS will simply overwrite the whole federation metadata document in its storage. Consequently entities that existed in the old metadata document but not in the new one are simply removed.

To update metadata for a federation, the FPP must use the HTTP PUT operation to send a document containing an EntitiesDescriptor. The document may contain one or more EntityDescriptor-s. The MDS will traverse the EntityDescriptor-s and update its storage with the new EntityDescriptor-s one by one. If either the updated or the stored documents contain signatures at the EntitiesDescriptor level, the MDS SHOULD return an error message. Therefore, federations that need to/want to sign documents at EntitiesDescriptor level should only publish documents containing metadata for the full federation, even if the updates do not concern all entities in the federation. With individual updates signed at EntityDescriptor level, entities stored in the MDS in the respective federation, which do not have a corresponding entry in the update document, will not be altered or removed.

3.4.6.2 Publishing or updating metadata for a single entity

Both FPPs and BEs are allowed to publish and update metadata for single entities. There is no difference between publishing and updating metadata for single entities. The HTTP POST or PUT operations could both be used without any difference in functionality. To publish metadata for a single entity, the document sent MUST contain an EntityDescriptor. The MDS needs to add or retrieve and update the corresponding EntityDescriptor within the EntitiesDescriptor document for that federation. The update EntityDescriptor MUST be signed, and in case a signature already exists at the upper EntitiesDescriptor level for that federation, the MDS SHOULD return an error message.

The document MUST be sent to an entity level URL, containing both the federation ID and the entity ID of the relevant entity (such as http://mds.ladok.umu.se/fedX/be1). If the publisher is an FPP, the MDS MUST validate its certificate and verify that the federation ID in the URL matches the one from the FPP component ID included in the FPP’s certificate, and the one from the EntityDescriptor@EntityID field. The same procedure needs to be carried out if the publisher is a BE, however both on federation ID and entity ID level.

3.4.7 Deleting metadata

Both FPPs and BEs may delete metadata from the MDS. To do so, they must use the HTTP DELETE operation. The message must contain a URL on federation or entity level, and the message SHOULD NOT have any HTTP body. A BE may only delete metadata on entity level and only for the entity to which it corresponds. The MDS MUST carry out the same validation procedures as described above for the cases of FPPs, respectively BEs publishing or updating metadata for a single entity.

3.4.8 Redirect

An MDS instance may redirect the client to another MDS instance using redirects. The client should then perform a new request to the new location. The redirect should be performed using 302 temporary redirect. The client should not cache the new location. This corresponds to the ConnectTo abstract result.

3.4.9 Errors

There are several types of errors that may occur:

· 400 Bad Request: The request is invalid. Invalid URI.
· 404 Not found: Meta data for the given entity ID is not found or search did not return any results.
· 500 Internal Server Error: If the MDS server did throw errors during the request.
The corresponding abstract values for errorReason and errorMessage will be sent along the HTTP error response document, thus providing a human-readable HTML error message containing additional information.

3.5 Web SSO Profile

This profile is intended to cover all the use cases in which a human user, by means of a Web browser, pretends to access different eduGAIN-enabled resources, employing a single authentication appropriately fulfilled at the corresponding local identity provider.

[image: image2.png]
Figure 4.1: Message flow in the WebSSO profile
3.5.1 SAML 1.1

For those eduGAIN BEs configured to use SAML 1.1, Web SSO procedures MUST comply with those described by the Shibboleth Web SSO Browser/POST profile (as described in [SAMLBind] and [ShibArch]), and according to the following rules:

· The providerId parameter used in the GET request to the H-BE SHALL contain the unique identifier of the requesting R-BE. It MUST be coded according to the structure defined for BE identifiers in the guidelines of section 3.1.

· The SAML response sent by the H-BE SHALL comply with the SAML 1.1 mapping of an eduGAIN AuthenticationResponse as described in the corresponding section of this document.

· If an error occurs, the H-BE MUST return a SAML <Response> in accordance with the SAML Browser/POST profile and coded according to the rules described for the SAML mapping of eduGAIN AuthenticationResponse with error results.

3.5.2 SAML 2.0

When configured to use SAML 2.0, eduGAIN BEs acting in WebSSO scenarios SHALL apply the procedures described by the SSO profiles of SAML 2.0, as described by [SAML2Prof] and [SAML2Bind], and according to the following rules:

· R-BEs MUST comply with the SAML 2.0 mapping of an eduGAIN AuthenticationRequest when redirecting the user’s browser to the H-BE.

· R-BEs SHOULD use the HTTP Redirect binding, and MAY use the HTTP POST binding if the size of the encoded eduGAIN AuthenticationRequest exceeds the practical limits of URL encoding.

· H-BEs MUST use in their response the HTTP POST binding.

· The SAML response sent by the H-BE SHALL comply with the SAML 2.0 mapping of an eduGAIN AuthenticationResponse as described in the corresponding section of this document.

· If an error occurs, the H-BE MUST return a SAML response coded according to the rules described for the SAML mapping of eduGAIN AuthenticationResponse with error results.

3.6 Automated Client Profile

This profile is intended for services that run without direct user interaction, so authentication through credential material provided in real time is not feasible. Automated Web-Services clients (such as those proposed by other JRAs in the GÉANT2 project) are in this category.

Each automated client MUST have an X.509 certificate issued by a CA subordinated to one of the eduGAIN roots of trust. The client MUST send along with its request a proof that it is the legitimate owner of this certificate according to the WS-Security X509 Certificate Token Profile [WSCTP].

[image: image3.png]
Figure 4.2: Message flow in the AC profile

3.6.1 Processing Rules

The R-BE receiving the X509 token MUST validate the certificate associated with it according to the procedures described in 3.6. If the validation succeeds, the eduGAIN component identifier associated with the certificate MAY be used to make a simple authorisation decision.

If further attributes are required by the R-BE policy to make the authorisation decision, the R-BE SHOULD use the component identifier to query the MDS in order to get a reference to the H-BE for the requesting client. Others techniques (like caching) can be used to locate the appropriate H-BE, but R-BEs MUST consider MDS as the only authoritative source for determining the H-BE of an automated client under this profile. Once the H-BE has been located, R-BE SHALL retrieve attributes from it by means of the eduGAIN attribute exchange protocol. Since many current IdP implementations are oriented to WebSSO scenarios and will not provide attributes without previous user authentication trough HTTP, any H-BE willing to support this profile MUST be able to establish a trusted link to the appropriate IdP in order to retrieve the requested attributes.

The response sent to the client SHALL include the results of the requested operation if the authorisation succeeds, or specific information in the case of a negative outcome, specifying at least the reason for the failed authorisation:

· Authentication required: The certificate was invalid or absent.

· Authentication failure: H-BE could not be located or was not possible to get a response from it.

· Authorisation failure: The R-BE policy does not allow the requested access.

3.7 User behind a Client Profile

This profile is applicable to WS clients that run independently of an HTTP (Web or application) server, but under the direct control of a human. These clients are standalone programs that can be freely installed at individual workstations or shared computers and are operated under direct control of their users.

[image: image4.png]
Figure 4.3: Message flow in the UbC profile

The processing rules applicable to this profile are the same described in the section above, the only difference being the way in which the client obtains the certificate used to identify the requester entity. In this case, the client must be able to act in the name of the individual using it in the moment the request is issued.

To let the user authenticate, the client MUST know the appropriate interface where user credentials must be sent, i.e., a specific interface for the H-BE, supporting the SASL [RFC2222] protocol. The client MAY directly request the user to identify an H-BE or collect some Home Locators to query the eduGAIN MDS.

Once the appropriate interface has been identified, the client SHALL engage into a SASL association with the H-BE in order to establish the appropriate user authentication environment. Once this environment has been established, the client SHALL collect the appropriate credentials from the user and forward them to the H-BE SASL interface.

Upon successful user authentication, the H-BE MUST return an eduGAIN certificate containing a valid eduGAIN CId. This certificate SHALL have a short validity period and a transient and/or pseudonym CId. The H-BE MUST honour this CId (through MDS and its own interfaces) so further possible attribute requests are correctly replied, according to the procedures described in the previous profile.

3.8 Client in Web Container Profile

This profile (for which the acronym WE, standing for “Web Enabled” will be used) is applicable in those cases where a certain software component (the client) is accessed by end users through a Web container (an application server, for example), and the client acts on behalf of the end user when requesting services to other component(s), that we will be referred as “resources” in the rest of this profile. To access the client, users must pass through the procedures described in 4.5 (WebSSO profile), so the container can provide the client with the attributes received during the WebSSO phase.

In this case, user authentication is performed by means of the same Web browser used to access the client. After the WebSSO steps, the client is able to send a proof of user’s identity, as asserted by the H-BE and with the appropriate restrictions to avoid abuse. In summary, the profile provides a method for performing secure identity delegation through WebSSO.

[image: image5.png]
Figure 4.4: Message flow in the WE profile

3.8.1 Processing Rules

The client container (through the appropriate federation/eduGAIN mechanisms) redirects the user browser to the appropriate H-BE for authentication. In doing so, it uses the eduGAIN profile for WebSSO.

Applying the local procedures at the Home federation, the user authenticates exchanging credentials at their local authentication point. The H-BE sends back to the client container an identity assertion. The container uses whatever local procedure to pass the received data to the client, preserving the original SAML asertions received from the H-BE as part of the SSO response. The precise procedures used by the container are out of the scope of this document.

The client MUST use the received SAML assertion to build a relayed-trust SAML assertion according to the profile described in the next section, including it as the identity material to be used in the request sent to the resource(s). The resource(s) receiving this assertion SHALL pass it for evauation to their corresponding R-BE. The concrete mechanisms for the passing of the relayed-trust SAML assertion from the client to the resource(s) and from there to the R-BE are out of the scope of this document.

The R-BE MUST evaluate the SAML construct according to the processing rules described in the section on the eduGAIN Basic Profile, and verify the usage restriction elements as described in the following section.
3.8.2 SAML Constructs for Relayed Trust

The SAML construct used in this case must be able to convey information about the user accessing the resource and fulfil two essential constraints:

· It has to be bound to the client by the H-BE, so it is possible to check that the information about the user that it contains has been legally obtained,

· It has to be bound to the resource by the client, so a potentially malicious resource cannot use this information to further impersonate either the client or the user.

To comply with these two requirements, the client will build a SAML assertion expressing data related to the authentication with:

· A valid audience restricted to the resource it is addressed to, through a SAML condition element containing an URI uniquely identifying the resource.

· A statement that this specific method of relayed trust must be used to evaluate the assertion, through a specific value in the SAML construct identifying the subject confirmation method. This value is the following URI in the eduGAIN namespace: urn:geant:edugain:reference:relayed-trust
· The SAML assertion(s) received from the web container as evidence for this confirmation process, as part of the SAML element SubjectConfirmationData.

A sample SAML assertion following the above procedures for a given client with the eduGAIN CId: urn:geant:edugain:component:perfsonarclient:NetflowClient10082

Acting on behalf of a user that it is identified by a BE with Cid:
urn:geant:edugain:be:uninett:idp1

And connecting to a resource identified by:
urn:geant:edugain:component:perfsonarresource:netflow.uninett.no/data

Should have a SAML 1.1 content as the one displayed below (some line breaks and indentation added to improve readability):

<?xml version="1.0" encoding="UTF-8"?>

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:SAML:1.0:assertion

 file:/Users/andreas/Documents/UNINETT/AAISpecs/SAML-1.1/oasis-sstc-saml-schema-assertion-1.1.xsd"

 MajorVersion="1" MinorVersion="1" AssertionID="100001"

 Issuer="urn:geant:edugain:component:perfsonarclient:NetflowClient10082"

 IssueInstant="2006-12-03T10:00:00Z">

<!-- An audience restriction, that will restrict this security token to be valid for

 one single resource only. -->

 <Conditions>

 <AudienceRestrictionCondition

 <Audience>urn:geant:edugain:component:perfsonarresource:netflow.uninett.no/data</Audience>

 </AudienceRestrictionCondition>

 </Conditions>

<!-- The authNstatement issued by the client itself -->

 <AuthenticationStatement AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

 AuthenticationInstant="2006-12-03T10:00:00Z">

 <Subject>

 <NameIdentifier Format="urn:mace:shibboleth:1.0:nameIdentifier">aksjc7e736452829we8</NameIdentifier>

 <SubjectConfirmation>

 <ConfirmationMethod>urn:geant:edugain:reference:relayed-trust</ConfirmationMethod>

 <SubjectConfirmationData>

 <Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

 xmlns:xsi="http://www.w3.org/2006/XMLSchema-instance"

 MajorVersion="1" MinorVersion="1" AssertionID="_200001"

 Issuer="urn:geant:edugain:be:uninett:idp1"

 IssueInstant="2006-12-03T10:00:00Z">

<!-- This inner assertion is limited to only be valid for the client performing the WebSSO authentication. This inner assertion cannot be reused or used at all by others than the NetflowClient10082 instance. But NetflowClient10082 can use it as an evidence when used inside an assertion issued by NetflowClient10082 using the relayed-trust confirmationMethod. -->

 <Conditions>

 <AudienceRestrictionCondition>

 <Audience>urn:geant:edugain:component:perfsonarclient:NetflowClient10082</Audience>

 </AudienceRestrictionCondition>

 </Conditions>

<!-- This is the inner authNstatement proving the authentication itself. These elements and attributes must

be identical in the inner and outer assertion:

- AuthenticationStatement@AuthenticationMethod

- AuthenticationStatement/Subject/NameIdentifier

The inner assertion confirmationMethod must be urn:oasis:names:tc:SAML:1.0:cm:bearer. -->

 <AuthenticationStatement AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

 AuthenticationInstant="2006-12-03T10:00:00Z">

 <Subject>

 <NameIdentifier

 Format="urn:mace:shibboleth:1.0:nameIdentifier">aksjc7e736452829we8</NameIdentifier>

 <SubjectConfirmation>

 <ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

 </AuthenticationStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<!-- Signed by the IdP (or Home Bridging element) -->

 <SignedInfo>

 <CanonicalizationMethod Algorithm="…"/>

 <SignatureMethod Algorithm="…"/>

 <Reference>

 <DigestMethod Algorithm="…"/>

 <DigestValue/>

 </Reference>

 </SignedInfo>

 <SignatureValue/>

 </Signature>

 </Assertion>

 </SubjectConfirmationData>

 </SubjectConfirmation>

 </Subject>

 </AuthenticationStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<!-- Signed by client -->

 <SignedInfo>

 <CanonicalizationMethod Algorithm="…"/>

 <SignatureMethod Algorithm="…"/>

 <Reference>

 <DigestMethod Algorithm=".."/>

 <DigestValue/>

 </Reference>

 </SignedInfo>

 <SignatureValue/>

 </Signature>

</Assertion>

In SAML 2.0 the same assertion should be as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:SAML:2.0:assertion

 file:/Users/andreas/Documents/UNINETT/AAISpecs/SAML-2.0/oasis-sstc-saml-schema-assertion-2.0.xsd"

 Version="2.0" ID="100001" IssueInstant=”2006-12-03T10:00:00Z”>

 <Issuer>

 urn:geant:edugain:component:perfsonarclient:NetflowClient10082"

 </Issuer>

<!-- An audience restriction, that will restrict this security token to be valid for

 one single resource only. -->

 <Conditions>

 <AudienceRestriction>

 <Audience>urn:geant:edugain:component:perfsonarresource:netflow.uninett.no/data</Audience>

 </AudienceRestriction>

 </Conditions>

 <Subject>

 <NameID>aksjc7e736452829we8</NameID>

 <SubjectConfirmation Method=”urn:geant:edugain:reference:relayed-trust”>

 <SubjectConfirmationData>

 <Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

 xmlns:xsi="http://www.w3.org/2006/XMLSchema-instance"

 Version="2.0" ID="_200001" IssueInstant="2006-12-03T10:00:00Z">

 <Issuer>urn:geant:edugain:be:uninett:idp1</Issuer>

<!-- This inner assertion is limited to only be valid for the client performing the WebSSO

 authentication. This inner assertion cannot be reused or used at all by others than the

 NetflowClient10082 instance. But NetflowClient10082 can use it as an evidence when used inside an

 assertion issued by NetflowClient10082 using the relayed-trust confirmationMethod. -->

 <Conditions>

 <AudienceRestriction>

 <Audience>urn:geant:edugain:component:perfsonarclient:NetflowClient10082</Audience>

 </AudienceRestriction>

 </Conditions>

<!-- This is the inner Subject and authNstatement proving the authentication itself. These elements

 and attributes must be identical in the inner and outer assertion:

 - Assertion/Subject/NameID

 - Assertion/AuthnStatement@AuthenticationMethod

 The inner assertion confirmation Method must be urn:oasis:names:tc:SAML:1.0:cm:bearer. -->

 <Subject>

 <NameID>aksjc7e736452829we8</NameID>

 <SubjectConfirmation Method=”urn:oasis:names:tc:SAML:2.0:cm:bearer”/>

 </Subject>

 <AuthnStatement AuthnInstant="2006-12-03T10:00:00Z">

 <AuthnContext>

 <AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password

 </AuthnContextClassRef>

 </AuthnContext>

 </AuthnStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<!-- Signed by the IdP (or Home Bridging element) -->

 <SignedInfo>

 <CanonicalizationMethod Algorithm="…"/>

 <SignatureMethod Algorithm="…"/>

 <Reference>

 <DigestMethod Algorithm="…"/>

 <DigestValue/>

 </Reference>

 </SignedInfo>

 <SignatureValue/>

 </Signature>

 </Assertion>

 </SubjectConfirmationData>

 </SubjectConfirmation>

 </Subject>

<!-- The authNstatement issued by the client itself -->

 <AuthnStatement AuthnInstant="2006-12-03T10:00:00Z">

 <AuthnContext>

 <AuthnContextClassRef>

 urn:oasis:names:tc:SAML:2.0:ac:classes:Password

 </AuthnContextClassRef>

 </AuthnContext>
 </AuthnStatement>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<!-- Signed by client -->

 <SignedInfo>

 <CanonicalizationMethod Algorithm="…"/>

 <SignatureMethod Algorithm="…"/>

 <Reference>

 <DigestMethod Algorithm=".."/>

 <DigestValue/>

 </Reference>

 </SignedInfo>

 <SignatureValue/>

 </Signature>

</Assertion>

4 References

[CPCPS]
eduGAINSCA Certificate Policy and Certification Practice Statements
http://pki.edugain.org/policy/
[GN2DJ522]
D. Lopez, R. Castro, B. Kerver, T. Lenggenhager, I. Melve, M. Milinovic, J. Rauschenbach, K. Wierenga, S. Winter, H. Ziemek et al. GÉANT2 Authentication and Authorisation Infrastructure (AAI) Architecture and Design. GÉANT2 Deliverable DJ5.2.2. October 2005. http://www.geant2.net/upload/pdf/GN2-05-192v6.pdf

[RADSEC]
S. Winter, M. McCauley, S. Venaas. RadSec Version 2 - A Secure and Reliable Transport for the RADIUS Protocol. Internet Draft, 2007.
http://www.ietf.org/internet-drafts/draft-winter-radsec-00.txt

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. Internet Best Current Practice, IETF. March 1997.
http://www.ietf.org/rfc/rfc2119.txt
[RFC2222]
J. Myers. Simple Authentication and Security Layer (SASL). IETF Standards Track, October 1997.
http://www.ietf.org/rfc/rfc2222.txt
[SAML2Bind]
Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS Standard, March 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
[SAML2Prof]
Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS Standard, March 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
[SAMLBind]
Bindings and Profiles for the OASIS Security Assertion Markup Language (SAML). OASIS Standard, September 2003.
http://www.oasis-open.org/committees/download.php/3405/oasis-sstc-saml-bindings-profiles-1.1.pdf
[SAMLMD]
Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS Standard, March 2005.
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
[ShibArch]
S. Cantor (editor). Shibboleth Architecture. Protocols and Profiles.10 September 2005.
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-arch-protocols-200509.pdf

[WSCTP]
Web Services Security X.509 Certificate Token Profile. OASIS Standard, March 2004.
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

[XPATH]
J. Clark, S. DeRose (editors), XML Path Language (Xpath) Version 1.0. W3C Recommendation, November 1999.
http://www.w3.org/TR/xpath
SAML 1.1 Mappings

This appendix describes the eduGAIN-SAML1.1 mapping, applicable to all the eduGAIN profiles that uses SAML, unless otherwise specified in the profile definitions.

It identifies the XPath of the elements and attributes that hold the parameters of the eduGAIN abstract operations.

A.1 Authentication Service

A.1.1 AuthenticationRequest

Use SAML 1.1 AuthenticationQuery
RequestID

//Request@RequestID

ProducerID

Out of the SAML mapping. Corresponds to the SubjectAlternateName extension in the certificate used during the TLS handshake by the requester.

ConsumerID

Out of the SAML mapping. It must match with the SubjectAlternateName extension in the certificate used during the TLS handshake by the responder.
Resource

Out of the SAML mapping. This parameter must be conveyed using profile-specific methods (like fields in an HTTP POST operation).
AuthenticationType
//Request/AuthenticationQuery/Subject/SubjectConfirmation/ConfirmationMethod[1]

AuthenticationMethod

//Request/AuthenticationQuery@AuthenticationMethod

AuthenticatingPrincipal

//Request/AuthenticationQuery/Subject/NameIdentifier
HomeLocators

//Request/AuthenticationQuery/Subject/SubjectConfirmation/ConfirmationMethod[>1]

set to urn:geant:edugain:reference:homelocator, plus
//Request/AuthenticationQuery/Subject/SubjectConfirmation/SubjectConformationData/
 HomeLocators

(using the format of a SAML AtributeStatement)
HomeSite

//Request/AuthenticationQuery/Subject/NameIdentifier@NameQualifier

Shire

Out of the SAML mapping. This parameter may be conveyed using profile-specific methods (like fields in an HTTP POST operation).
Referred

Out of the SAML mapping. It is recommended to use the Referrer: header of the HTTP(S) request, if present
CacheReference
//Request/AuthenticationQuery/Subject/SubjectConfirmation/ConfirmationMethod[>1]

set to urn:geant:edugain:reference:cache, plus

//Request/AuthenticationQuery/Subject/SubjectConfirmation/SubjectConformationData/
 CacheReference

(using an arbitrary string)

A.1.2 AuthenticationResponse

A SAML 1.1 Response containing two Assertion elements, one (mandatory) with a AuthenticationStatement and the other (optional) with a AttributeStatement, and //Response/Status/StatusCode@Value set to Success

ResponseID

//Response@ResponseID

ProducerID

Out of direct SAML mapping. Corresponds to the SubjectAlternateName extension in the certificate used for the XML signature of both assertions

//Response/ds:KeyInfo/ds:X509Data/ds:X509Certificate

ConsumerID

//Response/Assertion/Conditions/AudienceRestrictionCondition/Audience

NotBefore

//Response/Assertion/Conditions@NotBefore
NotAfter

//Response/Assertion/Conditions@NotOnOrAfter
InResponseTo
//Response@InResponseTo

Result

//Response/Status/StatusCode/StatusCode@Value

SubjectHandle

//Response/Assertion/AuthenticationStatement/Subject/NameIdentifier

AttributeValueList

//Response/Assertion/AttributeStatement

Interfaces

//Response/Status/StatusMessage

AdditionalData

//Response/Status/StatusDetail
A.1.3 AuthenticationError

A SAML 1.1 Response with //Response/Status/StatusCode@Value set to either Responder or Requester

errorReason

//Response/Status/StatusCode/StatusCode@Value

errorMessage

//Response/Status/StatusMessage

A.2 Attribute Exchange Service

A.2.1 AttributeRequest

Use SAML 1.1 AtributeQuery
RequestID

//Request@RequestID

ProducerID

Out of the SAML mapping. Corresponds to the SubjectAlternateName extension in the certificate used during the TLS handshake by the requester.

ConsumerID

Out of the SAML mapping. It must match with the SubjectAlternateName extension in the certificate used during the TLS handshake by the responder.
SubjectHandle

//Request/AttributeQuery/Subject/NameIdentifier

Resource
//Request/AttributeQuery@Resource
AttributeNameList

//Request/AttributeQuery/AttributeDesignator

HomeSite

//Request/AttributeQuery/Subject/NameIdentifier@NameQualifier
Referred
Out of the SAML mapping. It is recommended to use the Referrer: header of the HTTP(S) request, if present

CacheReference
//Request/AttributeQuery/Subject/SubjectConfirmation/ConfirmationMethod

set to urn:geant:edugain:reference:cache, plus

//Request/AttributeQuery/Subject/SubjectConfirmation/SubjectConformationData/
 CacheReference

(using an arbitrary string)
A.2.2 AttributeResponse
Use a SAML 1.1 Response containing one //Response/Assertion/AttributeStatement, and

//Response/Status/StatusCode@Value set to Success, and //Response/Assertion/AttributeStatement/Subject filled according to the request

ResponseID

//Response@ResponseID

ProducerID

Out of direct SAML mapping. Corresponds to the SubjectAlternateName extension in the certificate used for the XML signature of the assertion.

//Response/ds:KeyInfo/ds:X509Data/ds:X509Certificate

ConsumerID

//Response/Assertion/Conditions/AudienceRestrictionCondition/Audience

NotBefore

//Response/Assertion/Conditions@NotBefore
NotAfter

//Response/Assertion/Conditions@NotOnOrAfter
InResponseTo

//Response@InResponseTo

Result

//Response/Status/StatusCode/StatusCode@Value

AttributeValueList

//Response/Assertion/AttributeStatement

SubjectHandle

//Response/Assertion/AttributeStatement/Subject/NameIdentifier
Interfaces

//Response/Status/StatusMessage

AdditionalData

//Response/Status/StatusDetail
A.2.3 AttributeError

Use a SAML 1.1 Response with //Response/Status/StatusCode@Value set to either Responder or Requester

errorReason

//Response/Status/StatusCode/StatusCode@Value

errorMessage

//Response/Status/StatusMessage

A.3 Authorisation Service
A.3.1 AuthorizationRequest

Use SAML 1.1 AuthorizationDecisionQuery

RequestID

//Request@RequestID

ProducerID

Out of the SAML mapping. Corresponds to the SubjectAlternateName extension in the certificate used during the TLS handshake by the requester.

ConsumerID

Out of the SAML mapping. It must match with the SubjectAlternateName extension in the certificate used during the TLS handshake by the responder.
Resource

//Request/AuthorizationDecisionQuery@Resource

Action
//Request/AuthorizationDecisionQuery/Action

AttributeValueList

//Request/AuthorizationDecisionQuery/Evidence/Assertion/AttributeStatement

AttributeAuthority

//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/

 ConfirmationMethod

set to urn:geant:edugain:reference:attributeAuthority, plus
//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/

 SubjectConformationData/AttributeAuthority

(using the eduGAIN URI for the AAu)
SubjectHandle

//Request/AuthorizationDecisionQuery/Subject/NameIdentifier

PolicyReference

//Request/AuthorizationDecisionQuery/Evidence/Assertion/Advice

CacheReference

//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/
 ConfirmationMethod

set to urn:geant:edugain:reference:cache, plus

//Request/AuthorizationDecisionQuery/Subject/SubjectConfirmation/
 SubjectConformationData/CacheReference

(using an arbitrary string)
Referred

Out of the SAML mapping. It is recommended to use the Referrer: header of the HTTP(S) request, if present.

A.3.2 AuthorizationResponse

Use a SAML 1.1 Response containing one Assertion with one AuthorizationDecisionStatement, and //Response/Status/StatusCode@Value set to Success

ResponseID

//Response@ResponseID

ProducerID

Out of direct SAML mapping. It corresponds to the SubjectAlternateName extension in the certificate used for the TLS handshake and for the XML signature of the assertion (if signed)

//Response/ds:KeyInfo/ds:X509Data/ds:X509Certificate (if present)

ConsumerID

//Response/Assertion/Conditions/AudienceRestrictionCondition/Audience

NotBefore

//Response/Assertion/Conditions@NotBefore
NotAfter

//Response/Assertion/Conditions@NotOnOrAfter
InResponseTo

//Response@InResponseTo
Result

//Response/Status/StatusCode/StatusCode@Value

//Response/AuthorizationDecisionStatement@Decision

Interfaces

//Response/Status/StatusMessage

AdditionalData

//Response/Status/StatusDetail
A.3.3 AuthorizationError

Use a SAML 1.1 Response with //Response/Status/StatusCode@Value set to either Responder or Requester
errorReason

//Response/Status/StatusCode/StatusCode@Value

errorMessage

//Response/Status/StatusMessage
SAML 2.0 Mappings

This appendix describes the eduGAIN-SAML2.0 mapping, applicable to all the eduGAIN profiles that uses SAML, unless otherwise specified in the profile definitions.

It identifies the XPath of the elements and attributes that hold the parameters of the eduGAIN abstract operations.

A.4 Authentication Service

A.4.1 AuthenticationRequest

Use SAML 2.0 AuthnRequest
RequestID

//AuthnRequest@ID

ProducerID

//AuthnRequest/Issuer
ConsumerID

//AuthnRequest@Destination.
Resource

Out of the SAML mapping. This parameter must be conveyed using profile-specific methods (like fields in an HTTP POST operation).
AuthenticationType
//AuthnRequest/NameIDPolicy

AuthenticationMethod

//AuthnRequest/RequestedAuthnContext
AuthenticatingPrincipal

//AuthnRequest/Subject/NameID
HomeLocators

//AuthnRequest/Subject/SubjectConfirmation@Method
set to urn:geant:edugain:reference:homelocator, plus
//AuthnRequest/Subject/SubjectConfirmation/SubjectConfirmationData/HomeLocators

(using the format of a SAML AtributeStatement)
HomeSite

//AuthnRequest/Subject/NameID@NameQualifier

Shire

Out of the SAML mapping. This parameter may be conveyed using profile-specific methods (like fields in an HTTP POST operation).
Referred

Out of the SAML mapping. It is recommended to use the Referrer: header of the HTTP(S) request, if present
CacheReference
//AuthnRequest/Subject/SubjectConfirmation@Method
set to urn:geant:edugain:reference:cache, plus

//AuthnRequest/Subject/SubjectConfirmation/SubjectConfirmationData/CacheReference
 (using an arbitrary string)

A.4.2 AuthenticationResponse

A SAML 2.0 Response containing two Assertion elements, one (mandatory) with a AuthnStatement and the other (optional) with a AttributeStatement, and //Response/Status/StatusCode@Value set to Success

ResponseID

//Response@ID

ProducerID

//Response/Issuer

ConsumerID

//Response/Destination

NotBefore

//Response/Assertion/Conditions@NotBefore
NotAfter

//Response/Assertion/Conditions@NotOnOrAfter
InResponseTo
//Response@InResponseTo

Result

//Response/Status/StatusCode/StatusCode@Value

SubjectHandle

//Response/Assertion/Subject/NameID

AttributeValueList

//Response/Assertion/AttributeStatement

Interfaces

//Response/Status/StatusMessage

AdditionalData

//Response/Status/StatusDetail
A.4.3 AuthenticationError

A SAML 2.0 Response with //Response/Status/StatusCode@Value set to either
urn:oasis:names:tc:SAML:2.0:status:Responder
or urn:oasis:names:tc:SAML:2.0:status:Requester
errorReason

//Response/Status/StatusCode/StatusCode@Value

errorMessage

//Response/Status/StatusMessage

A.5 Attribute Exchange Service

A.5.1 AttributeRequest

Use SAML 2.0 AtributeQuery
RequestID

//Request@ID

ProducerID

//Request/Issuer
ConsumerID

//Request@Destination

SubjectHandle

//Request/AttributeQuery/Subject/NameID

Resource
Out of the SAML mapping. This parameter must be conveyed using profile-specific methods (like fields in an HTTP POST operation).

AttributeNameList

//Request/AttributeQuery/Attribute

HomeSite

//Request/AttributeQuery/Subject/NameID@NameQualifier
Referred
Out of the SAML mapping. It is recommended to use the Referrer: header of the HTTP(S) request, if present

CacheReference
//Request/AttributeQuery/Subject/SubjectConfirmation@Method

set to urn:geant:edugain:reference:cache, plus

//Request/AttributeQuery/Subject/SubjectConfirmation/SubjectConformationData/
 CacheReference

(using an arbitrary string)
A.5.2 AttributeResponse
Use a SAML 2.0 Response containing one //Response/Assertion/AttributeStatement, and

//Response/Status/StatusCode@Value set to Success, and //Response/Assertion/Subject filled according to the request

ResponseID

//Response@ID

ProducerID

//Response/Issuer

ConsumerID

//Response@Destination

NotBefore

//Response/Assertion/Conditions@NotBefore
NotAfter

//Response/Assertion/Conditions@NotOnOrAfter
InResponseTo

//Response@InResponseTo

Result

//Response/Status/StatusCode/StatusCode@Value

AttributeValueList

//Response/Assertion/AttributeStatement

SubjectHandle

//Response/Assertion/Subject/NameID
Interfaces

//Response/Status/StatusMessage

AdditionalData

//Response/Status/StatusDetail
A.5.3 AttributeError

A SAML 2.0 Response with //Response/Status/StatusCode@Value set to either
urn:oasis:names:tc:SAML:2.0:status:Responder
or urn:oasis:names:tc:SAML:2.0:status:Requester
errorReason

//Response/Status/StatusCode/StatusCode@Value

errorMessage

//Response/Status/StatusMessage

A.6 Authorisation Service
A.6.1 AuthorizationRequest

Use SAML 2.0 AuthzDecisionQuery

RequestID

//Request@ID

ProducerID

//Request/Issuer

ConsumerID

//Request@Destination

Resource

//Request/AuthzDecisionQuery@Resource

Action
//Request/AuthzDecisionQuery/Action

AttributeValueList

//Request/AuthzDecisionQuery/Evidence/Assertion/AttributeStatement

AttributeAuthority

//Request/AuthzDecisionQuery/Subject/SubjectConfirmation@Method

set to urn:geant:edugain:reference:attributeAuthority, plus
//Request/AuthzDecisionQuery/Subject/SubjectConfirmation/

 SubjectConformationData/AttributeAuthority

(using the eduGAIN URI for the AAu)
SubjectHandle

//Request/AuthzDecisionQuery/Subject/NameID

PolicyReference

//Request/AuthzDecisionQuery/Evidence/Assertion/Advice

CacheReference

//Request/AuthzDecisionQuery/Subject/SubjectConfirmation@Method

set to urn:geant:edugain:reference:cache, plus

//Request/AuthzDecisionQuery/Subject/SubjectConfirmation/
 SubjectConformationData/CacheReference

(using an arbitrary string)
Referred

Out of the SAML mapping. It is recommended to use the Referrer: header of the HTTP(S) request, if present.

A.6.2 AuthorizationResponse

Use a SAML 2.0 Response containing one Assertion with one AuthzDecisionStatement, and //Response/Status/StatusCode@Value set to Success

ResponseID

//Response@ID

ProducerID

//Response/Issuer

ConsumerID

//Response@Destination

NotBefore

//Response/Assertion/Conditions@NotBefore
NotAfter

//Response/Assertion/Conditions@NotOnOrAfter
InResponseTo

//Response@InResponseTo
Result

//Response/Status/StatusCode/StatusCode@Value

//Response/AuthzDecisionStatement@Decision

Interfaces

//Response/Status/StatusMessage

AdditionalData

//Response/Status/StatusDetail
A.6.3 AuthorizationError

A SAML 2.0 Response with //Response/Status/StatusCode@Value set to either
urn:oasis:names:tc:SAML:2.0:status:Responder
or urn:oasis:names:tc:SAML:2.0:status:Requester
errorReason

//Response/Status/StatusCode/StatusCode@Value

errorMessage

//Response/Status/StatusMessage
4

[image: image9.jpg][image: image10.png]