Draft Specification for Fedora Authentication and Authorization
I. General Requirements:
Fedora as stand-alone application: Fedora must provide secure authentication capability out-of-the-box. This means that Fedora can operate as a stand-alone application that provides (1) user registration, (2) run-time user authentication, and (3) run-time acquisition of user attributes.

Fedora integrated with other applications: Fedora must be able to participate in distributed application scenarios which require one-time user authentication from an origin site. In this case, it is assumed that users are registered somewhere outside the Fedora repository. Ideally, Fedora can use the Shibboleth architecture to ensure that users are authenticated from a given origin site, and to securely obtain attributes about those users.
In recognition that some repositories may not require user authentication at all, the Fedora server will allow two configurations:
1. Open server Configuration:
The Fedora repository will not perform any user authentication. This implies that authorization (policy enforcement) is turned off too.
2. Secure Server Configuration: Via Plug-Ins for Authentication and Attributes
a. Fedora strategy: design things so we can support multiple plug-in modules that implement authentication and attribute-getting. Each Fedora installation can choose which module to plug in, or develop its own. Fedora must design how an authentication plug-in module interacts with the Fedora authorization (policy enforcement) module. Here is a diagram of the basic Fedora configuration we will pursue:

[image: image1.wmf]Fedora Repository

Fedora Web Service

Interfaces

AuthNAttr

(

Pluggable

AuthN

 and Attribute-

getter

module)

AuthZ

(Fedora policy enforcement module)

Plug-in 1: Basic

Auth

 over

SSL

 using user identity file

Plug-in 2: Basic

Auth

 over

SSL

 using

LDAP

 directory

Plug-in 3: Shibboleth

- Internal Fedora module with well-defined interface

-

ExpectsXML

 transmission of authenticated attributes

 (schema

TBD

)

- Enforces

XML

-encoded policies that refer to attributes

 of an authenticated subject. (

XACML

)

-

Can

trigger a request to the

AuthNAttr

 module to

 obtain attributes required for policy enforcement.

authenticated

attrs

request

attrs

II. Initiation of the authentication challenge:

In Fedora, it is desired that an authentication challenge be a function of access control policy. We anticipate access control policies being written around Fedora web service requests. Ideally, a user is not challenged unless they are making a request for which a policy exists. So, the decision to challenged the user or not is buried inside the Fedora implementation.
III. Fedora Policy Enforcement Module for Access Control:
A new authorization module must be developed in the Fedora server to perform policy enforcement. The basic functions of the module are to:

1. Intercept API-A, API-M, and dissemination requests

2. Deconstruct requests to obtain relevant properties for policy evaluation (e.g., object PID, other parameters)

3. Determine what policy or policies are in scope for the request

4. Determine if authentication challenge to client is necessary to enforce the policy

5. Initiate authentication challenges over SSL
6. Obtain attributes of authenticated user

7. Evaluate and enforce the policy or policies that are in scope.

8. Allow or deny the request to be executed.

IV. Policy Expression Language:
In Fedora, access control policies will be expressed in XML. The proposed XML format is the eXtensible Access Control Markup Language (XACML) which is a standard put out by OASIS. Reasons for this choice include:

1. Easily understood core entities and XML syntax
2. Policies can be based on attributes of subjects/users and resources

3. Policies can explicitly deny or allow access

4. Poised to work well with SAML (used in Shibboleth for attribute assertion)

5. The language is not overburdened with DRM and commercial bias
V. Policy Management and Binding:

To provide for flexibility in how policies are managed in the repository, Fedora will support the following:

a. Repository-wide policy for API-M
b. Repository-wide policy for API-A

c. Object-bound policies, either stored in objects or pre-bound to objects

For each API-M request, policy binding and enforcement will work like this:
1. Evaluate Repository-wide API-M policy. If this policy denies the request, then throw policy exception and terminate request. Otherwise, run the request.

For each API-A and dissemination request, policy binding and enforcement will work like this:

1. Evaluate Repository-wide API-A policy. If this policy denies the request, then throw policy exception and terminate request. Otherwise, proceed to next step.

2. If object-bound policy exists, evaluate it. If object-bound policy denies the request, throw policy exception and terminate request. Otherwise, run the request.

Conjunction of policies: It should be observed that it is possible for two policies to be in scope for API-A and dissemination requests (i.e., both the Repository-wide API-A policy and an object-bound policy can be in scope). Essentially the policy enforcement module will “AND” together the result of the two policy evaluations. The API-A repository-wide policy will be evaluated first. Then the object-bound policy will be evaluated. One false (i.e., “deny”) will terminate the request.

Policy configuration scenarios: A repository administrator has some flexibility as to how policies will be managed in Fedora. The following policy management scenarios are enabled:
1. Assert one global policy for the repository: This can be accomplished by defining access restrictions in the repository-wide API-A policy, and by not creating any object-bound policies. One policy controls the repository. Policy declarations can be made to pertain to all objects, groups of objects, or specific objects. This type of policy configuration may be useful in cases where a repository administrator has determined that object-bound policies are not desirable. For example, access control requirements might be very coarse-grained and simple such as in the policy “deny access to any request on any object if the user is not from Institution A”. Caution should be taken if there are many objects in the repository, each with their own policy requirements. In such cases, attempts to use the repository-wide policy to make object-specific declarations could result in a very large and unwieldy policy file. The better bet in this situation is to disaggregate the policy declarations into specific object-bound policies.
2. Assert global policy declarations to override object-bound policies: This can be easily accomplished my making appropriate declarations in the repository-wide API-A policy. The repository-wide policy will have precedence over object-bound policies since it will be evaluated first by the policy enforcement module. Access requests can be denied via the repository-wide policy, thereby preventing further evaluation of any object-bound policies. Also, the use of the repository-wide policy may be helpful when object-bound policies exist, but there is the need to quickly override such policies for a specific period of time. For example, if each object in the repository has its own idiosyncratic policy, but a legal issue or other event requires that all access to all objects must be denied for 24 hours, then the repository-wide API-A policy could be modified to express such a restriction and override any object-bound policies. This can be done without having to modify or remove the existing object-bound policies. The repository-wide policy can later be modified again to remove a global restriction, essentially reinstating the object-bound policies.
3. Assert only object-bound policies: This can be accomplished by essentially nullifying the repository-wide API-A policy by having the policy allow all access (no restrictions). The repository-wide policy will thus have no effect in terms of terminating requests, and the object-bound policies will automatically be the only policies that matter.

VI. Some Open Questions for AuthN and AuthZ:

a. What about a program as client to Fedora? What is protocol for programs/agents authenticating? This includes other Fedora repositories as clients.

b. Should we consider designing the AuthNAttr plug-in as actually wrapping two sub-plug-ins - one for AuthN and one for attribute-getting? This enables some more flexibility in terms of different authentication schemes being paired with different implementations of how to obtain attributes.

c. Note on Shibboleth-enabling Fedora: We envision Plug-in #3 as a Shibboleth plug-in for Fedora. When this plug-in is installed, the assumption is that user provides credentials and Fedora can use Shibboleth to authenticate those credentials with user’s origin institution and to get attributes about the user. What about the case where the user has no external origin and is, in fact, only registered with the Fedora repository? We assume that a Fedora repository can have its own database of valid users. How does this work alongside the case where users are registered with their origin institution. If Fedora is configured with a Shibboleth-plug-in, how do we account for the fact users may EITHER be registered directly with the Fedora user database OR externally with their home organization’s directory? Can we have it both ways? Would we do this something like this…

1. The Fedora server will also run its own Shibboleth “Where Are You From” (WAYF) service and its own “Attribute Authority” (AA) service. Fedora could interact with itself as a Shibboleth origin site using the Shibboleth protocol. We can implement this with Shibboleth libraries if a Shibboleth Java target becomes available soon. Otherwise, we can write our own code that is Shibboleth-compliant. Underlying the Shibboleth implementation, Fedora could use LDAP to create a simple directory for storing user identities and user attributes. The users recorded in this directory are those are explicitly registered as users of the Fedora repository. Is this some weird combination of Plug-in #2 under Plug-in #3 (as depicted in the diagram above)?? Is this a scenario that we should try to avoid?

d. Should we try to adopt the Shibboleth EduPerson attribute set as a “common ground” for Fedora? (So, that would mean that Plug-in #2 would require a mapping of arbitrary LDAP directory attributes to Eduperson just for some standardization in the Fedora world.) This might provide some normalized schema for attributes which would be helpful for writing access control policies around attributes (whether or not the Shibboleth plug-in is installed). Is it reasonable to expect LDAP directory attributes to be mapped to Eduperson? The nice thing about Eduperson is that the attributes are globally unique (they are identified by URIs that are registered within the OID scheme), and it anticipates Shibboleth.

e. If we determine that attributes other than EduPerson attributes that are necessary to enforce typical Fedora policies, we may need to create a Fedora-specific attribute set. Or maybe attributes need to be namespaced in general, and the Fedora authorization module will be able to enforce policies that contain attributes of the namespaces that Fedora recognizes.

_1141803720.bin

