

© 2021 University Corporation of Advanced Internet Development

Shibboleth Identity and Service Provider Training Takeaway

• Shibboleth is a standards-based, open-source single sign-on (SSO) solution that
enables people from multiple institutions to access network services shared in a
circle of trust known as a federation.

• Shibboleth is an implementation of Security Assertion Markup Language (SAML).
SAML gives Shibboleth interoperable SSO capabilities. Using SAML also means
individual users in the federation need fewer passwords. And SAML provides
better auditability features than traditional SSO solutions.

• Trust among federations is also established via the secure distribution and
synchronization of SAML metadata, the information about the federation’s
Identity Providers (IdPs) and Service Providers (SPs). This metadata is used to
scale trust relationships, facilitate SAML transactions to improve authentication,
help apps make authorization decisions, and provide accountability and security.
Each entity’s metadata is keyed by its unique name, called an EntityID.

• Service providers specify what user and/or organizational attributes are required
to access their services. And user privacy is protected at all times.

• The InCommon Trusted Access Platform packages Shibboleth IdP and SP as
Docker container images to simplify installation and configuration. Containers are
the latest way to deploy applications. A container image is your complete
application in a package you can deploy and run across multiple environments no
matter the infrastructure. You can think of container as highly scriptable virtual
machines. They are abstractions at the application layer.

1 Shibboleth Overview

© 2021 University Corporation of Advanced Internet Development

• As an IdP operator, you need to integrate two major components from your
infrastructure: an authentication source and an attribute store.

• The most common authentication methods supported natively by Shibboleth IdP
are LDAP, Kerberos, and external authentication. LDAP and Kerberos can
authenticate against Active Directory. External authentication is possible via an
API. Central Authentication Service (CAS) can be leveraged through this API. LDAP
is the typical attribute store, although Shibboleth also supports SQL. Shibboleth
IdP’s attribute resolver transforms LDAP and SQL attributes into SAML attributes.

Figure 1 Shibboleth IdP is made up of a protocols layer and a services layer.

2 IdP Planning

© 2021 University Corporation of Advanced Internet Development

This table shows the Shibboleth configuration files and directories:

File Purpose
access-control.xml Use this file to control access to administrative pages such as stats,

resolver testing tool, service-reload endpoints, etc.
attribute-filter.xml Use this file to configure attribute release policies. The Shibboleth IdP

has a very flexible rules engine. It allows you to release or block
attributes to a single SP, a list of SPs, or all SPs in a federation. This is the
file you’ll touch most often.

audit.xml Use this file to control how audit information is written to the audit logs.
Edit this file if you want to add or remove information from Shibboleth’s
audit logs.

authn/ This is a directory in which you can configure authentication styles and
control when a particular flow is to be used. Configuring this directory
controls authentication behavior, including MFA scripting.

cas-protocol.xml Use this file to configure features of the IdP’s built-in support for Central
Authentication Service (CAS) protocol.

credentials.xml Use this file to configure SAML keys and certificates. You only need to
touch this file if you need to perform a key rollover.

errors.xml Configure how the IdP handles errors. You’ll find this useful if users are
hitting a condition that results in a very bad experience. For example,
you could have a certain event type show a local page with a more
helpful error message than simply sending the user on to the service
with a SAML error.

global.xml Empty by default, use this file to override the default behavior of low-
level components such as session or storage management.

idp.properties Use this file to affect a particular global setting before you decide to edit
other config files. It’s easier to make changes to the IdP’s config with
this file than it is to edit other .xml files.

intercept/ Use the intercept flows to modify processing flows. Some example flows
you’ll find in this directory include attribute consent, terms of use, and
attribute release.

ldap.properties Use this file to configure various LDAP authentication and attribute
lookup settings.

3 IdP Configuration

© 2021 University Corporation of Advanced Internet Development

File Purpose
logback.xml Configure all the IdP’s logging activity with this file. The default settings

work for most situations. You may want to make changes to this file if
you need DEBUG logging for the LDAP authentication module or for
your authentication events, or if you want to receive an email
notification when the IdP logs a message with the level of ERROR.

metadata-providers.xml Use this file to add SAML metadata sources and to configure how SAML
metadata is validated.

relying-party.xml Use this file to control which SAML profiles will be presented to which
services and how the IdP will handle authentication for the various
services. Aspects you can control with this file include whether to sign
and encrypt assertions, specify the preferred authentication method,
and what to use for the SAML NameID.

saml-nameid.xml This file configures the generation of SAML NameIDs at a finer level of
control than the saml-nameids.properties config file.

services.properties The IdP will automatically reload many of its configuration files which
allows you to make changes to the configuration without causing an
outage. Use this file to configure services and settings which control the
configuration reload policy.

services.xml Use this file to control how various sub-systems within the IdP load their
configuration. For example, you could configure the IdP to pull its
relying-party.xml or attribute-resolver/filter.xml files from a central web
server or sub-version repository instead of using the local copy in the
directory.

session.manager.xml Use this file to configure how the IdP handles user sessions.

© 2021 University Corporation of Advanced Internet Development

• Observer your IdP’s health by looking for a “healthy” status in the docker ps
output.

• The Linux-based IdP container writes most logging information to <stdout> and
is available via the docker logs <containerID> command or by using docker-
compose docker-compose logs idp from the same directory as the docker-
compose.yml file.

• Periodically poll the IdP on its overall health by visiting the /idp/status URL.
• To troubleshoot issues, first check the log output by using the docker logs

<containerID> or docker-compose logs idp command. You can also consult
the Shibboleth wiki.

4 IdP Operation

© 2021 University Corporation of Advanced Internet Development

• The SP supports active and so-called lazy sessions. Active sessions require an SSO
session on all visits. For lazy sessions, the application decides when to initiate a
session (by redirecting to a special handler URL).

• Answer the following questions to determine how metadata will be managed:
o How will IdPs/customers get your metadata?
o How will you maintain your metadata?
o From what sources will get trusted metadata?
o How will changes to metadata be handled?

• Answer the following questions regarding attributes as part of planning your SP
deployment:

o What attributes will you require?
o How will you use the required attributes?
o Will you be storing these attributes?
o How will you communicate your requirements to IdP operators?
o How will your application handle situations in which some of the required

attributes aren’t released by the IdP?
• If your SP will have users from more than a single IdP, then your SP will need to

handle IdP discovery. If your service works with many IdPs, you can use a
discovery service such as the Shibboleth Embedded Discovery Service (EDS), a
light-weight and easily-deployed solution. If you’re only interacting with a few
IdPs, need even more customization than the EDS provides, or simply want an
option to bypass user-facing IdP discovery, you can use direct links to the
Shibboleth SP’s login handler.

• The Shibboleth SP is made up of two components: a web server module that just
listens for incoming requests, and a service/daemon that takes a handoff from
the web server to do the actual work of processing requests.

5 SP Planning

