JISC-NPM – Alarms Servicee
[image: image7.png]

JISC-NPM

NPM: Alarms Service
Table of Content

31. Introduction

31.1. References

31.2. Glossary of acronyms

42. Prioritised alarm conditions

93. Requirements

104. Alarms Service Architecture

115. Algorithms

115.1. Pre-conditioning

115.2. Alarm detection

115.3. More things To consider

126. Prototype for the Mid-October 2008

126.1. Possible Ways of displaying Alarms in Nagios

147. Questions

1. Introduction

We aim to put together a software service for the management and generation of alarms based on the status of the network. The “Alarms Service” will interact with perfSONAR (developed by GÉANT2-JRA1) so as to get information about the status of the network; use of other sources of information may also be considered.

We plan to provide a simple user interface for the definition and management of the conditions that will trigger alarms. These alarm conditions will correspond to metrics collected by perfSONAR. There will be a different interface (or modality of the same interface) for the display of the alarms. It should be noted that our (JISC-NPM) effort will mainly be focused on development of a simple but usable software that works with perfSONAR and not on a sophisticated user interface or software with full set of features for alarms.
1.1. References

1. perfSONAR, http://wiki.perfsonar.net/jra1-wiki/index.php/Main_Page
2. Hades MA Service, http://wiki.perfsonar.net/jra1-wiki/index.php/Hades_MA_Service
3. Nagios, Open Source host, service and network monitoring software, http://www.nagios.org/

4. Statistical Analysis of IP Performance Metrics in International Research and Educational Networks, Thomas Holleczek, Dissertation, http://wiki.perfsonar.net/jra1-wiki/images/4/4c/Holleczek_analysis_print.pdf
1.2. Glossary of acronyms

	Acronym
	Definition

	MA
	Measurement Archives

	OWD
	One Way Delay

	OWDV
	One Way Delay Variation

	UI
	User Interface

2. Prioritised alarm conditions

LHC-OPN is going to be the first user of our Alarms service. Therefore, we should first try to satisfy the requirements from Edoardo. Edoardo and Nicolas put together list of 7 conditions that an alarms service should monitor for LHC-OPN]. The following table shows the prioritised
 list.

	Condition #1
	Alarm
	Description
	Purpose
	Comments

	1
	RoutingAlarm (sourceSite, destinationSite)

	IF path changes
 AND no down wavelenghts (sourceTier-destinationTier) (circuits over which the previous path was going over) THEN RoutingAlarm(sourceTier-destinationTier)
	Indicates a possible re-route is over another Tier1
	Presently perfSONAR data does not support this.

According to Nicolas,

“Works only for project whose sites are connected via wavelengths. Not over IP backbones as the NRENs.”

“The difficulty here is to map the IP path to wavelengths. This might be done manually.”

“The second issue is that the path is not retrievable using perfSONAR.

Ad-hoc solution may be found.”

	2
	RoutingOutofOpnWarning(sourceSite, destinationSite)

	Variant from RoutingAlarm(sourceTier-destinationTier).

If path changes AND one of the hops is not an IP address from the LHC-OPN prefix list THEN Warning
	Indicates a possible re-route outside the OPN nework
	Note this is a “warning” not an alarm (i.e., Network operator may decide to ignore it).

Note, Warnings may be examined when trying to trouble shoot alarms

A “Warning” could be treated as a less severe “Alarm”

	3
	InterfaceCongestionAlarm (tier, router, Interface)
	IF output drops on a router interface > parameter THEN InterfaceCongestionAlarm (tier, router, Interface)

Parameter = 0 drops

	Indicates interface congestion
	This can be achieved with present perfSONAR data. Alarms software development should first focus on satisfying this alarm condition.

	4
	InterfaceErrorsAlarm (tier, router, Interface)

	IF interfaces errors on a router interface > parameter THEN InterfaceErrorsAlarm (tier, router, Interface)

Parameter = 0 errors
	Indicates: circuits errors that need to be investigated by the Tier NOC
	This can be achieved with present perfSONAR data

	5
	InfrastructureChangeWarning (sourceTier, destinationTier)

	IF (((delay <= parameter1) AND (delay variation > parameter2) AND (no path changes))

 OR ((delay > parameter1) AND (delay variation > parameter3) AND (no path changes) THEN InfrastructureChangeWarning (sourceTier, destinationTier)

Parameter1 = 10ms

Parameter2 = 2 ms

Parameter 3 = 10% of the delay value

	indicates infrastructure re-route or light congestion
	Unknown whether perfSONAR data support this (According to Nicolas, paths history measure is not exported through perfSONAR)

Baseline needed (OWD(min) for rerouting; distribution width of OWD for congestion.

	6
	InterfaceHeavyCongestionWarning (Tier, router, Interface)
	IF ((output drops > parameter1) AND (link utilisation > parameter 2)) THEN InterfaceHeavyCongestionAlarm (Tier, router, Interface)
Parameter1 = 10

Parameter2 = 80% of the link capacity

	
	This may be achieved with present perfSONAR data.

	(7)
	NotEnoughBandwidthApplicationNameWarning (sourceTier, destinationTier)

	IF ((available BW (sourceTier, destinationTier) >= parameter1) AND (TCP throughput(sourceTier, destinationTier) < parameter2)) THEN NotEnoughBandwidthApplicationNameWarning (sourceTier, destinationTier)

Where avaiableBW(sourceTier, destinationTier) = Min (For each interface i along the path from sourceTier to destinationTier : interfaceCapacity(i) – interfaceUtilisation(i))

Parameter1 = 1Gbps

Parameter 2 = 450Mbps [this is dependent on the information given by the people responsible of the applications]
	Indicates TCP throughput issues
	This “warning” may be achieved with present perfSONAR data. This is of less direct interest (Seen as not important by Edoardo).

Baseline not needed, just threshold must be reached.
This is seen as not important by Edoardo.

Table 1: Alarm conditions

One important point to note is that where ever thresholds are used in defining conditions, they must be configurable.

According to Nicholas, Alarm condition #1 (RoutingAlarm) can not currently be supported with perfSONAR data (as far as I understood condition of a path can not be extracted). He suggested starting with condition #3 as this is much easier to do.

The perfSOANR web-services provide input errors, output drops, link capacity, link utilisation, OWD, IPDV, OWPL, circuit status. The Layer 3 interface status is not supported at the moment. These make condition # Re-reading my notes, what is of interest to Edoardo is not the status of the L3 interface, but of the L2 circuits (E2EMon information). The challenge lies into mapping an IP address of an interface (provided by a traceroute) to a L2 circuit connected to the router interface.

· 1 and 2 are not feasible as path information is currently not available through perfSONAR (ideally, it should use an hop list provided by perfSONAR – alternative: use another protocol to retrieve that information from the Hades system as a temporary measure).

· 5 feasible if the path term is ignored (see remark above on path availability)

3, 4, 6 and 7 are feasible but require hard-coding of the list of interfaces crossed between the sites

In general, all the parameters can be changed by the users. At this stage, it is difficult to know if the parameters will be global for all the measurements or whether they will depend on the measurement (e.g. parameter from measurement site1 to site2 will be different from parameter from site 1 to site 4). We will assume the parameters are global for the time being.

It is also necessary to be able to define conditions to close an alarm.
Information of interest when examining one of the above alarms is listed below (Table 2).
	Condition #
	Alarm
	Fields of interest

	1
	RoutingAlarm (sourceSite, destinationSite)

	Alarm name, starting time of the alarm, source tier, destination tier, pointer to history of traceroute – e.g. using the hades visualisation where you have different path displayed.

	2
	RoutingOutofOpnWarning(sourceSite, destinationSite)

	Alarm name, ?

	3
	InterfaceCongestion (tier, router, Interface)
	Alarm name, start time of the alarm, tier site, router, interface, optional: number of packet loss seen.

	4
	InterfaceErrorsAlarm (tier, router, Interface)

	Alarm name, start time of the alarm, tier site, router, interface, number of errored packet seen.

	5
	InfrastructureChangeWarning (sourceTier, destinationTier)

	Alarm name, Delay site1-site2, IPDV (delay variation) site1-site2, path site1-site2 and previous path site1-site2.

	6
	InterfaceHeavyCongestionWarning
	Alarm name, start time of the alarm, tier site, router, interface,,number of packet loss seen, interface capacity.

	7
	NotEnoughBandwidthApplicationNameWarning (sourceTier, destinationTier)

	Alarm name, ?

3. Requirements

The following requirements are derived from the notes in this document. The list specify what the proposed alarm service MUST, SHOULD and MAY satisfy by end of March 2009.

1. Alarm service MUST monitor the alarm condition #3 -> “InterfaceCongestion (tier, router, Interface)”

2. Alarm service MUST monitor the alarm condition #1 -> “RoutingAlarm (sourceSite, destinationSite”

3. Alarm notifications MUST be displayed on a web page.

4. Thresh hold values in an alarm definition MUST be configurable.

5. All alarms and warnings SHOULD be archive in order for investigations and evaluations (e.g., for “debugging”).

a. These MAY be viewed via the Alarms Service UI

6. An alarm SHOULD display other related “information of interest”

Information of interest for each alarm is given in Table 2
7. The User Interface (UI) SHOULD allow alarms to be removed.

a. Alarms SHOULD have a maximum life

According to Nicolas, 1 week should be sufficient

8. Alarm service SHOULD support perfSONAR version 3.0. Note that the released deployed within the LHC sites is the release 3.1 (in practices, virtually no modification to the query/request over 3.0).
9. Alarms MAY be defined in a configuration file.

10. Alarm service MAY monitor other alarm conditions subject to perfSONAR supporting the required data.
4. Alarms Service Architecture
A high description of the architecture for the Alarms Service is given below. Each component of the architecture is described in detail in the subsections.

[image: image1.emf]MA

Services

MA Query

Interface

MA

Notification

Interface

Pre-conditioner

Current Status

Analyser

Configuration

Parser

Alarm

Analyser

Status Notifiers

Alarms

Configuration

Web UI

Email

Recent

Status

History

Alarms

Archive

New

Update

Remove

Figure 1: Alarms Service Architecture
As the Figure 1 shows, Alarms Service expects to utilise various services provided by Measurement Archives (MAs) to obtain data necessary for detecting alarm conditions. Since MA Services are external to the Alarm Service these are shown in a greyed-out box in Figure 1. Alarms Service may utilise the MA Services either by contacting a relevant MA service (e.g., perfSONAR[1] or HADES[2]) to obtain necessary data via its MA Query Interface or allowing a MA service to notify relevant conditions via its MA Notification interface. The data received by MA Query Interface and MA Notification Interface is fed into the Pre-Conditioner component for cleaning the data. The Pre-Conditioner performs various cleaning tasks such as removal of any outliers [4], detection of path changes and then presents data to the Current Status Analyser. The Current Status Analyser uses the cleaned up measurement data along with the configuration details (e.g., alarm conditions themselves and how often to analyse) to check whether any alarm condition is reached. When an alarm condition is reached, the Current Status Analyser sends it to the Alarm Analyser. The Alarm Analyser checks the Recent Status History store to detect whether these are new alarms, one recently detected or if an existing alarm is not valid anymore. Alarm Analyser can also be used to detect conditions such as “flapping”. The Alarm Analyser informs registered notifiers about status changes (new, update or remove alarm). Multiple notifiers, implementing the Status Notifier interface, fulfil different purposes and are registered with the Alarm Analyser. There are at least three immediate examples for components implementing the Status Notifier interface: To archive all alarms and their history in a database, to email appropriate people about new alarms and to display the current alarm status on a web page.

5. Algorithms

5.1. Pre-conditioning

According to [4] there are several “cleaning” operations to be performed before network measurement data can be analysed:

· Clock error: for metrics that involve the timing between a source and a destination, the clocks of both sides need to be synchronised. Any clock drift needs to be detected to avoid wrong alarms.

· Outliers: for one reason or another, single measurements can be significantly off the norm, but might not qualify for an alarm to be raised. These so-called “outliers” might need to be detected and removed, depending on the metric analysed.

· Route clustering: only measurement data for the same route can be used for analyses, meaning that the measurement data has to be separated (clustered) if the route of a network path was changed.

MoreToDo.

5.2. Alarm detection

One possible way of detecting alarm conditions in the analysed measurement data is the use of rule-based systems. Rule-based systems allow the definition of rules (alarm conditions), which are then applied against existing knowledge (the measurement data) and possible actions (alarms) are inferred if the rules are found to match the knowledge. This has the advantage of separating the alarm conditions from the analysing components, allowing adding/removing/modifying conditions dynamically.

MoreToDo.

5.3. More things To consider

We need to be able to detect flapping. E.g. drops, not drops, drops the again no drops. The alarm is raised for an interval of 5-15 minutes, then closed for the same amount of time, then opened again. So if the user goes to the matrix or to the list of current open alarms, he has 50% of chances of not seeing them. To be investigated.

6. Prototype for the Mid-October 2008

[image: image2.emf]perfSONAR

MA

MA Query

Interface

Current Status

Analyser

Configuration

Parser

Alarms

Configuration

Nagios UI

Figure 2: Parts of the architecture to be implemented by Mid-October 2008

Figure 2 shows the components of the overall architecture that we are planning to implement with limited functionality by middle of October 2008. The MA Query Interface will be limited to talking to a perfSonar (v3.0) service. The Current Status Analyser will raised alarms using the perfSONAR data and the Alarms Rule Configuration. Raised alarms will be displayed using the Nagios UI. That is, we are planning to use Nagios for this prototype. The section 4.1 describes a mock UI for Nagios.

6.1. Possible Ways of displaying Alarms in Nagios

The Figure 3 shows the Nagios[3] based mock UI dashboard for the alarm service. Nagios displays alarms for configured services on a “per host“ basis. Each service is associated with a host. There are multiple ways how to map this “host (services” relation to the “host1 (host2” link structure of the monitored networks. Two representations of Tier0 to Tier1 path-by-path service status (note that each service is unidirectional) are shown in Figure 3.
	Using "Host" as Source and "Service" as Destination

	Host
	Service
	Status
	Information

	T0
	T1#1
	OK
	

	
	T1#2
	OK
	

	
	T1#3
	CRITICAL
	10 output drops in last 15 minutes

	
	T1#4
	OK
	

	T1#1
	T0
	OK
	

	T1#2
	T0
	CRITICAL
	14 output drops in last 15 minutes

	T1#3
	T0
	OK
	

	T1#4
	T0
	OK
	

	
	
	
	

	
	
	
	

	Using "Service" as Link
	
	

	Host
	Service
	Status
	Information

	T0
	T0->T1#1
	OK
	

	
	T0->T1#2
	OK
	

	
	T0->T1#3
	CRITICAL
	10 output drops in last 15 minutes

	
	T0->T1#4
	OK
	

	
	T1#1-T0
	OK
	

	
	T1#2-T0
	CRITICAL
	14 output drops in last 15 minutes

	
	T1#3-T0
	OK
	

	
	T1#4-T0
	OK
	

Figure 3: A Nagios UI mockup
	Tier
	dest
	Status
	In status since
	Alarm Information

	CERN
	gridka
	OK
	134d7h
	

	CERN
	IN2P3
	OK
	
	

	CERN
	Fermi
	Warning
	
	Re-route over RAL

Figure 4: Preferred display for alarm conditions #1, #2, #5 and #7
	Tier
	Router
	Interface
	Description
	Status
	Alarm Information

	CERN
	Shoubi.cern.ch
	So-7/0/0
	to IN2P3
	OK
	

	
	Shoubi.Cern.ch
	Ge-6/0/0
	To gridKa
	OK
	

	
	douWap.cern.ch
	POS6/0
	Circuit to INFN – provider X
	CRITICAL
	10 output drops in last 15 minutes (thresh 8)

	
	douWap.cern.ch
	GE0/0
	
	OK
	

	IN2P3
	Yo.in3p3.fr
	POS3/0
	
	OK
	

Figure 5: Preferred display for Alarms conditions #3, #4 and #6
7. Questions

1. How should an Alarm system deal with "flapping" alarms, meaning that an alarm condition changes between active/inactive frequently? Should this be dealt by the Alarm system internally or should this be configurable? If the latter, should it be configurable as general parameter or alarm condition-specific?

Flapping Issue: Ideally, the Alarm System would provide three ways of dealing with flapping:

1) General handling, independent of alarm condition

2) General configuration per alarm type

3) Specific configuration for circuit ID, IP, src/dst

We can have:

[image: image3.emf]Alarm off

Alarm On

Alarm raised

Alarm closed

Alarm raised

Alarm closed

But that’s what we want to avoid.

[image: image4.emf]Alarm off

Alarm On

Alarm raised

RTNP

RTNP: return to normal period - if no additional measurements over

a threshold occurred over the RTNP period of time, then the alarm

is closed. The RTNP is reset each time an event occurs

Alarm closed

RTNP

This way we avoid storming the OC with alarms.
Please note that if one measurement is missing, RTPN should either ignore it (And be extended by one period or time) or should consider it as a green measurement or as a red one (conservative)

In some case, we may not wish to send an alarm from the first red event, we may wish to have several of them before sending one.
occurring.

[image: image5.emf]Alarm off

Alarm On

Alarm raised

ARP

ARP: alarm raising period - if there is a second measurement over

a threshold during the ARP period of time, then the alarm is raised.

This mechanism enable to prevent a too fast triggering of alarms for

low importance thresholds.

Alarm closed

RTNP

[image: image6.emf]Measurement

Measurement above a threshold

Alarm off

Alarm On

Alarm raised

ARP

Alarm closed

RTNP

Please note that I am making the assumption that (1) there may be multiple thresholds for a measurements and that (2) the thresholds may be triggered differently.

(1) examples:

(a) pkt loss warning threshold = 5 pckt lost; ARP = 3; RTNP = 3

(b) pkt loss threshold alarm = 100 packet lost; ARP = 0; RTPN = 3

(2) different types of thresholdings

(a) threshold = fixed value

(b) threshold = if the value varies than more than 25% from the average last 4 weeks at the same time

(c) comparison with clusters

Now to answer your question:

(1) one may expect the users to wish to rely on generic thresholds and flapping avoidance option (where he wouldn’t need to do anything).

(2) In case he gets annoyed by recurrent alarms, he will wish to change the parameter to specifics ones.

(3) Mutliple users are receiving the same alarms, one would expect not to be impacted by somebody else change of alarming threshold.

Another way of looking at it would be to sent the alarms and let the local operator deal with the issue of filtering themselves on their local devices.

2. Should the condition when to remove an alarm (e.g. alarm condition not active for 15 minutes) be part of the alarm condition or would this rather be a general parameter?

It should be a general parameter for a given type of alarm (condition). It might be the case where one may wish to change it for a given interface (bcs there are frequently packet losses), but in the case he is aware about it, he may prefer to suspend the alarm reception for that given alarm.
On those topics, I think we need to involved operational people. I am talking in theory. I am suggesting to set-up a call with Edoardo to go further on this topic.

3. For the planned prototype, how would the LHC-OPN "dashboard" look like when using Nagios? Relates to spreadsheet mock-up shown in Figure 3.

4. If the dashboard shown in Figure 3 is acceptable, which of the two representations is better?
I would ask the capability of choosing between showing all and showing only the alerts.
5. Can you give us multiple examples of actual measurements where we would or would not expect an alarm to be raised (for condition #3)? Is it correct assuming that all what we would need is start/end time, router interface and the MA to be queried?

6. Should alarm time frame and frequency of checking the alarm conditions be configurable for each individual alarm condition

My guess would be yes. Because the data are measured at different intervals: utilisation, packet drops: every 5 minutes, traceroute every 5-10 minutes, L2 status every 10 minutes, TCP throughput every 6 hours, delay measurement every minutes, retrievable every 30 minutes to start with.
7. Can we access the perfSONAR service deployed at the LHC-OPN (assuming it is already deployed)?

None already deployed. When deployed they will be heavily firewalled. If they are accessed, they should be from Dante address space. A point to cover.

� This priority was agreed in the teleconference held with Edoardo, Nicolas, Otto and charaka on Thursday 17th July 08 at 14:00 CEST. The condition # is based on the original numbered list that Nicolas circulated, via email (with title “Re: perfsonar”), on Wed 16 July.

� Based on delay or trace routes

8
	
	
	2 / 17

[image: image7.png][image: image8.png]

[image: image9.jpg]coCC

_1281444509.vsd
�

perfSONAR
MA�

MA Query
Interface�

Current Status
Analyser�

Configuration Parser�

Alarms Configuration�

Nagios UI�

_1281876920.vsd
Alarm off�

Alarm On�

Alarm raised�

RTNP�

RTNP: return to normal period - if no additional measurements over a threshold occurred over the RTNP period of time, then the alarm is closed. The RTNP is reset each time an event occurs�

Alarm closed�

RTNP�

_1281876991.vsd
Alarm off�

Alarm On�

Alarm raised�

ARP�

ARP: alarm raising period - if there is a second measurement over a threshold during the ARP period of time, then the alarm is raised.
This mechanism enable to prevent a too fast triggering of alarms for low importance thresholds.�

Alarm closed�

RTNP�

_1281877082.vsd
Measurement�

Measurement above a threshold�

Alarm off�

Alarm On�

Alarm raised�

ARP�

Alarm closed�

RTNP�

_1281876533.vsd
Alarm off�

Alarm On�

Alarm raised�

Alarm closed�

Alarm raised�

Alarm closed�

_1281440409.vsd
�

�

MA Services�

Alarm Analyser�

MA Query
Interface�

MA Notification
Interface�

Pre-conditioner�

Current Status
Analyser�

Configuration Parser�

�

Status Notifiers�

New
Update
Remove�

Web UI�

Email�

Alarms
Archive�

Recent
Status
History�

Alarms Configuration�

