Distributed Lookup Service in perfSONAR

This document describes the Distributed Lookup Service in the perfSONAR (pS) system. This functionality extends the basic Lookup Service (LS) functionality that has been present in the system for some time. The basic LS supports the storing and querying of perfSONAR Service information as well as metadata about data stored or gathered by a particular pS service instance. This document describes the support necessary to extend this service to a distributed mode of operation. There are a few key facets of this mode of operation:

· Summarization – to reduce the amount of information sent over the network, some form of data reduction must take place

· Scope – to enable a hierarchy of systems, some form of scoping must exist

· Search – information location is key and the way in which distributed search is accomplished must be described

Summarization

The first step of information flow is when a service registers with an LS. The service may know the name of an LS via static configuration, or other forms of bootstrapping may occur. A service registers a metadata record about itself and full metadata (i.e. containing all information such as subject, eventType(s), and any parameters) about stored (or gathered) data. Such a record is called Lookup Information. (See example b). The idea is to move the metadata from a local XML data store to a specialized LS with additional searching capabilities. While a service instance may support limited searching, this is not required as they should be focused on storing or gathering data and leave the lookup functionality to the LS. Possible exceptions are rapidly changing Metadata like the most recent timestamp and full details of data stored in long-term archival MAs.

The LS that a service contacts to register becomes the “Home LS” (HLS) of that particular service. It is the responsibility of the HLS to make summary data about the all of the pS services it knows of available to the larger enterprise and to draw relevant queries to itself. In order to make information available to the LS cloud, the HLS will advertise this summary information to other LS instances to propagate appropriate information. The most natural summarization is based on the topology of the network (like in network routing). Thus, a given HLS will perform topology-based summarization and will include this information as well as eventType information to other LSs in its “local scope”. Likewise, more aggressive summarization will take place when the “local scope” registers into the “global scope”. This is analogous to the aggregation that occurs in IGPs (local scope) and EGPs (global scope).

Summarization will be performed using either Extensible Stylesheet Language Transformation (XSLT) documents or the XQuery language. Each of these approaches has pros and cons. XQuery is supported by XML databases and many people find it easier to read and understand. XSLT is also in wide use and is available as a standalone application. The key issue is the format of the output so it is less important which particular mechanism is used.

These documents will take into account the XML elements that represent the network topology currently used in metadata subjects as well as additional items such as eventTypes. The output of this process becomes a 'service summary' that represents a breadth of the original input. See the attached file, summary.xml for a mock-up of the summary output. Additional XSLT specifications will be used to create 'summary summaries' for the upper levels. These transformations, while aggressive, will strive to preserve as much information as possible to remain useful during the search procedures.

In early discussions, we left the possibility open for multiple types of summarization for different types of services and data. This is still possbility. There are arguments to simplify the types of summarizations that can occur. The first is that arbitrary summarizations will yield arbitrary XML data, making discovery queries more difficult to construct. Thus it seems to be sufficient to summarize over the Topology elements in a regular fashion and simply include the eventTypes and drop the Parameters. This will ease query construction.

We may target cases where various summarizations are possible, but for now summarization on the basis of topology seems sufficient.

A related question is that of policy. In our discussions, we had the intution that some domains would want to register less information than others. One example is whether the actual IP addresses of MPs capable of launching active measurements. These hosts, if compromised, can pose significant denial of service threat.

Scope Formation

The next question is how to form the local and global scopes
. The simplest answer is that the local scope be formed based on the domain name of the participating systems. That would allow e.g. internet2.edu, geant2.net, and poznan.pl to potentially operate more than one LS instance inside their own domains (for performance and scalability.) As LS instances come online they will invoke bootstrapping procedures to find and join a locally scoped group first.

The scopes should be named based on URIs. This will allow a domain-level scope to take the form http://internet2.edu, with subdomain scopes named http://internet2.edu/foo, etc. The top-level scope can be called http://perfsonar.net with potential for geographic divisions later if necessary for performance (such as http://eu.perfsonar.net).

The global scope should consist of one representative from each of the local scopes. This representative could be manually configured, but one of the design goals of the LS was to be largely self-configuring. Thus, we will use a token-passing and leader election scheme to allow this representative to be automatically selected. For leader election, a typical protocol should be used. The basic mechanism of leader election is that participants form a logical ring and initiate an election. An election can be initiated when a new machine joins, at system start time, or when a host feels that the leader may have failed based on failure to receive a periodic token. When an election is initiated, the initiating host sends an election message to its counter-clockwise neighbor and changes its state to “ELECTING”. It places its identifier inside the message. The ulimate goal is for the host with the highest identifier to be chosen. When a host receives an election message, it compares its identifier with that in the message. It forwards the higher of the identifiers. When a node receives a message with its own identifier, it knows that it has been selected and the election terminates.

The timeout mechanism needs to be specified. It can be computed as a function of the number of nodes in the ring. This is the Target Token Rotation Time (TTRT).

Do we accept the situation where one LS may control more than one domain? For instance one “PSNC LS” could support domains “pionier.pl”-for national network and “man.poznan.pl”-for metropolitan area network. It's just a remark.

I say we do. An LS can already participate in more than one scope (local and global) and this is really a case of the same thing. We need to think thru how it looks though.

Scopes are named based on URIs. The top-level domain provides a natural basis for the formation of these URIs. These URIs may be constructed to allow internal differentiation. In the future, we may need a mechanism to provide another level of hierarchy above the domain level and below the root, but that is left for future work. Note: I would like to see this be something like: http://lsls.perfsonar.net/global/internet2.edu/. Actual syntax doesn’t matter that much but I would like the following components: 1) well-known hostname to get the current root.hints from (lsls) 2) a place holder for where we can break the scope between organization and global (global), 3) a zero-conf default name for the organization (internet2.edu) 4) A way to sub-divide the organization (everything after trailing /)

Search

The search operation is obviously critical to the Lookup Service's function. It is envisioned that searching will take two major forms, iterative and recursive, analogous to those used in DNS. This design will focus exclusively on iterative initially as the only method in the first versions of the mLS. (Although we may comment on sections that will need to be enhanced to deal with recursive queries.) The key act when searching is to find what eventTypes exist for a particular topology element or set of topology elements.

As outlined above, the full data that services register to an LS is not expected to leave the scope of that LS. The information is summarized before wider distribution. Therefore, a client needs to find an LS in the scope of the HLS to make queries about the complete metadata. Specifically, a client wishing to locate information might specify a topology element in a query to locate the LS instance (or instances) that contain the relevant details. This separation of full data and summary data means the overall act of searching is broken down into two distinct phases -- Discovery and Metadata Query.

MG: We must take into consideration that we use XQuery to query service. For single LS (basic LS) it's simple (even if the query is complicated we know what to do). It may complicate things somehow. I know there may be several query requests to LS (as described below), but anyway, the client must know the structure (and data collected) in summary information, for instance. MS: right and that’s why arbitrary summarizations are bad.

In fact, we talked about them being flexible but the only example we ever used was for
Discovery Phase

The Discovery Phase is used to locate the set of Authoritative LS (or LSes) for a given Subject/eventType tuple. This requires a query to be constructed over the Discovery information set (which is not described yet, but which must consist of the 3-tuple of Subject Summary, eventType and Authoritative LS.) Either a specific API call and a pre-prepared query, or some automatic mechanism, must map the desired query into a query of the Discovery infoset. See disc.xml for an example of a discovery based request/response.

Discovery Algorithm

The discovery algorithm is as follows.

1. A client locates an LS of some sort (this may be known beforehand via a configuration value, or from bootstrapping).

2. The client should start by making a discovery query (possibly using an API call) to locate an LS that contains the data it is interested in. The results of this query will be:

a. Failure: Returned if there is no LS at a higher scope than the current one, and nothing was found in the summary infoset that matches the query.

b. Referral: This is returned when there is no match other than a “global wildcard”

i. If this LS is not participating in the highest (global) scope, then it returns the leader of its current scope (or a direct referral to an instance of the next-higher scope.) This is effectively a wildcard match saying “I don’t know the answer, but I know who might.” This is how the Metadata registered to an LS in another scope (domain) is found.

c. Success: We define success to mean at least one matching LS has been returned. The LS must return the following:

i. If this LS is an HLS for the discovery query, it returns itself.

ii. This LS also returns any other HLS instances it has found that match. An LS instance will have summary information from other domains when it is participating in a higher-level scope (such as global).

Note: this is where recursive searches would be added into the discovery phase. The trail up the scope hierarchy would be followed by the LS itself instead of returning the leader LS. Ideally, this list would be iterated on by the LS so that only leaf LS instances are returned

3. The client will need to iterate through the list of returned LS instances. If the LS returns itself, this LS can be used in the following Metadata query phase. If the returned LS is different, a discovery query should be made to it.

Metadata Query Phase

The Metadata Query Phase with an individual LS is the same as the query mechanism that is in place with the current LS implementations.

Once we have found the Home LS (or Home LSes) that contain data in the range of our discovery query, we can pose Metadata Queries to each of them. The results will be failure or success.

Note: If recursion is added to the discovery phase, it would also be possible to add recursion to the Metadata query phase. The LS could query the other LS instances. (However, this is likely to cause more problems for AA because it opens up the possibility of caching metadata, not just summary data.) Future optimizations may allow the inclusion of both queries in a single message linked by chaining.

MG: Right, AA may be a problem. But another problem may be bigger traffic. I'd let the client decide if to stop or go on after getting a list of remote (than HLS) locations of requested Lookup Information.
Bootstrapping

A distributed information system such as the LS needs to address bootstrapping. In this system, an LS instance needs to find other members of its scope (for each scope in which it participates.) To accomplish this we will use a similar solution to what DNS uses (root.hints).

We will maintain a service that maintains a list of currently known LS instances. These known instances should preferably be at the global scope. All clients can cache this list. The service will be accessed via a well-known hostname, and could be requested via UDP messages. (We can also use TCP here for some sorts of anycast.)

Initially this will be deployed on one server. We can extend this to handle redundancy and load balancing in the future by using multiple DNS records and implementing ANYCAST with routing tricks for this well known hostname. (Additionally, we can distribute an initial file with a list of well known LS instances that are supported by the primary perfSONAR participants.)

The above discovery algorithm is used to find an LS within a given scope. Therefore, the only piece of information an LS should need to be preconfigured with is the scope it belongs to. And as stated above, that can be assumed to be “global:organization-dns-name”. Note: Need to define the specific syntax above.
Also multicast is possible!

Structures and Messages

a) Service metadata example

Example of metadata describing information collected and stored in Measurement Archive service

<nmwg:metadata id="17155427">

 <netutil:subject id="17062918">

 <nmwgt:interface>

 <nmwgt:hostName>Gallup's.fr</nmwgt:hostName>

 <nmwgt:ifName>ge-1/1/0</nmwgt:ifName>

 <nmwgt:ifDescription>Gallup's description: ge-1/1/0</nmwgt:ifDescription>

 <nmwgt:ifAddress type="ipv4">229.148.7.224</nmwgt:ifAddress>

 <nmwgt:direction>in</nmwgt:direction>

 <nmwgt:authRealm>RemoveMe!!! authRealm NOT USED</nmwgt:authRealm>

 <nmwgt:capacity>250000000</nmwgt:capacity>

 </nmwgt:interface>

 </netutil:subject>

 <nmwg:eventType>utilization</nmwg:eventType>

</nmwg:metadata>

<nmwg:metadata id="171558">

 <netutil:subject id="17062918">

 <nmwgt:interface>

 <nmwgt:hostName>Gallup's.fr</nmwgt:hostName>

 <nmwgt:ifName>ge-1/1/0</nmwgt:ifName>

 <nmwgt:ifDescription>Gallup's description: ge-1/1/0</nmwgt:ifDescription>

 <nmwgt:ifAddress type="ipv4">229.148.7.224</nmwgt:ifAddress>

 <nmwgt:direction>out</nmwgt:direction>

 <nmwgt:authRealm>RemoveMe!!! authRealm NOT USED</nmwgt:authRealm>

 <nmwgt:capacity>250000000</nmwgt:capacity>

 </nmwgt:interface>

 </netutil:subject>

 <nmwg:eventType>utilization</nmwg:eventType>

</nmwg:metadata>

b) Lookup Information

Example Lookup Information of Measurement Archive. Metadata block contains basic service information and data elements collects full (or summarized? -TBD?) information about stored or gathered data (see example a)

<nmwg:metadata id="http://shower.fr:8080/axis/services/MeasurementArchiveService">

 <perfsonar:subject id="subj.15977808">

 <psservice:service id="229.148.249.60.16283379">

 <psservice:serviceName>Java RRD MA</psservice:serviceName>

 <psservice:accessPoint>http://shower.fr:8080/axis/services/MeasurementArchiveService</psservice:accessPoint>

 <psservice:serviceType>MA</psservice:serviceType>

 <psservice:serviceDescription>Java RRD MA, perfSONAR project, 229.148.249.60</psservice:serviceDescription>

 </psservice:service>

 </perfsonar:subject>

</nmwg:metadata>

<nmwg:data id="http://shower.fr:8080/axis/services/MeasurementArchiveService/1177595435/0"

 metadataIdRef="http://shower.fr:8080/axis/services/MeasurementArchiveService">

 <nmwg:metadata id="17155427">

 <netutil:subject id="17062918">

 <nmwgt:interface>

 <nmwgt:hostName>Gallup's.fr</nmwgt:hostName>

 <nmwgt:ifName>ge-1/1/0</nmwgt:ifName>

 <nmwgt:ifDescription>Gallup's description: ge-1/1/0</nmwgt:ifDescription>

 <nmwgt:ifAddress type="ipv4">229.148.7.224</nmwgt:ifAddress>

 <nmwgt:direction>in</nmwgt:direction>

 <nmwgt:authRealm>RemoveMe!!! authRealm NOT USED</nmwgt:authRealm>

 <nmwgt:capacity>250000000</nmwgt:capacity>

 </nmwgt:interface>

 </netutil:subject>

 <nmwg:eventType>utilization</nmwg:eventType>

 </nmwg:metadata>

</nmwg:data>

<nmwg:data id="http://shower.fr:8080/axis/services/MeasurementArchiveService/1177595435/1"

 metadataIdRef="http://shower.fr:8080/axis/services/MeasurementArchiveService">

 <nmwg:metadata id="17155428">

 <netutil:subject id="17062918">

 <nmwgt:interface>

 <nmwgt:hostName>Gallup's.fr</nmwgt:hostName>

 <nmwgt:ifName>ge-1/1/0</nmwgt:ifName>

 <nmwgt:ifDescription>Gallup's description: ge-1/1/0</nmwgt:ifDescription>

 <nmwgt:ifAddress type="ipv4">229.148.7.224</nmwgt:ifAddress>

 <nmwgt:direction>out</nmwgt:direction>

 <nmwgt:authRealm>RemoveMe!!! authRealm NOT USED</nmwgt:authRealm>

 <nmwgt:capacity>250000000</nmwgt:capacity>

 </nmwgt:interface>

 </netutil:subject>

 <nmwg:eventType>utilization</nmwg:eventType>

 </nmwg:metadata>

</nmwg:data>

c) Local summary

Example of XSLT

...to be discussed... (I think that's not so important now how to do summarization. More important is what we need to get as output data. Then we'll be able to produce proper XSLT or Xquery - MG)

Example of Xquery
 ... the same as above...

Summary output

to be done

d) Global summary

Example of summarized lookup information sent by LS to top hierarchy

Example of XSLT

...

Example of Xquery

...

Summary output

...

e) Query to LS and LS responses

Example queries sent to HLS.

this should address all points od Discovery Algorithm, especially:

pt.2 – discovery query and responses

a) failure,

...

b) Refereal,

...

c) Success

...

Internal data set for summarization data

Summarization schema

Glossary

Service – A Service is an application that communicates with other perfSONAR Services via standarized protocol set (SOAP+XML+NMWGv2)

Lookup Service (LS) – The Lookup Service is a key element of the perfSONAR framework because it allows every independent service to be a visible part of the system. New services may identify themselves to the community and provide their detailed capabilities description. Other services are able to communicate to the LS in order to get this data called Lookup Information. Basic Lookup Service supports registration, query, keepalives and de-registration actions (additionally updates?).

Lookup Information – information registered by a Service in the Lookup Service

Summary Information – aggregated information from Lookup Information that is sent by one LS to another

Multidomain / Distributed Lookup Information (mLS) – Lookup Service which supports summarization and communication with other Lookup Services (which might be in the same domain…)

Home LS (HLS) – The Home LS of a Service is the LS where the Service registers its Lookup Information
�I think it would be good to describe scopes in general first (or at least put in a ref to the other paper...

