
Quality Assurance in perfSONAR Release
Management

Jeff W. Boote∗, Andreas Hanemann†, Loukik Kudarimoti‡, Panagiotis Louridas§, Luı́s Marta¶,
Michalis Michael‖, Nicolas Simar‡ and Ilias Tsompanidis§

∗Internet2, 1000 Oakbrook Drive, Suite 300, Ann Arbor, MI 48104, USA
boote@internet2.edu

†German Research Network (DFN), c/o Leibniz SupercomputingCenter
Boltzmannstr. 1, 85748 Garching, Germany, hanemann@dfn.de

‡DANTE, 126-130 Hills Road, Cambridge CB2 1PG, United Kingdom
{loukik.kudarimoti,nicolas.simar}@dante.org.uk

§Fundaç āo para a Computaç āo Cientı́fica Nacional (FCCN)
Av. do Brasil, 101, 1700-066 Lisboa, Portugal, lmarta@fccn.pt

¶ Cyprus Research and Academic Network (Cynet), c/o Information System Services
University of Cyprus, P.O. Box 20537, 1678 Nicosia, mikem@ucy.ac.cy

‖ Greek Research and Academic Network (GRNET), 56 Mesogion Ave., 11574 Athens, Greece
itsomp@ccf.auth.gr, louridas@grnet.gr

Abstract—Software release management is closely related to
the management of software quality since only software with
assured quality should be provided to users. While established
best practices exist for the development of software within
an organization, new challenges arise with the introduction
of Service Oriented Architectures which make it possible to
develop loosely coupled systems potentially involving different
organizations. For these systems it is not sufficient to testparts
individually, but the collaboration issues need to be takeninto
account.

In the perfSONAR project a set of loosely coupled web services
has been developed to perform and manage measurements of
network performance in research backbone networks. For the
transition of the service development into the provisioning of
permanently operated services, a release management process has
been devised. It is presented in this paper highlighting theaspects
being taken into account. These are also relevant for similar
projects where Service Oriented Architectures are deployed.

I. I NTRODUCTION

The perfSONAR project [1] is a cooperation between the
EU-funded GN2 JRA1 project, Internet2 and ESnet to deliver a
framework for network performance measurements in research
backbone networks. The framework together with measure-
ment and visualization tools will be deployed and operated on
a permanent basis within the partner networks.

For the implementation of the framework a Service Ori-
ented Architecture [2] has been devised which is reflected
in the name of the framework (Performance focused Service
Oriented Network monitoring ARchitecture). It is depicted in
Fig. 1. In the lower layer measurement tools are in place to
perform active or passive network monitoring and to measure
metrics like utilization, delay, jitter, packet loss, or available
bandwidth. For managing the measurements within a domain,
but also inter-domain a set of services has been developed.

metric 2
measurement point

type 2

Measurement
Point 
Layer

User
Interface

Layer

metric 1
measurement point

metric 2
measurement point

type 1

Service
Layer

domain A −
services

domain B −
services

domain C −
services

user interface 1 user interface 2

domain Cdomain Bdomain A

Fig. 1. JRA1 architecture proposal

These provide functionalities like the archiving of measure-
ments, service lookup, or authentication. Visualization tools
make use of the services to provide measurement results to
different user groups in a suitable manner.

For the transition from the development of services to a
deployment and operation on a permanent basis a release
management process has been installed which is subject to this
paper. As the services are developed by different small groups
at the project partner networks and due to the loosely coupling
of the services, the testing within the release management
has to ensure the collaboration among the services. Therefore,
best practices for release management and testing have been
extended towards the multi-domain background of the project.

The paper is organized as follows. In Section II the re-
quirements that have to be taken into account for the release
management in perfSONAR are derived. These are compared



with the state-of-the-art in release management for which
models in software management and service management are
reviewed (Section III). The release management process is
presented in Section IV and the lessons learned including test
cases from the first two releases are given in Section V. The
future deployment of perfSONAR services as so calledMulti-
Domain Monitoring (MDM)services providing some details
about the pilot installation within the Portuguese research
network FCCN is outlined in Section VI. The conclusion in
Section VII highlights the relevance of this work for similar
SOA-based projects.

II. RELEASE MANAGEMENT CHALLENGES

The general aim of release management is to provide
services for installation with an assured service quality.Quality
in this sense does not only mean that services should be
error-free, but should also have provide those functionalities
as previously specified. For perfSONAR these aims can be
detailed as follows.

a) Release bundling:There is a trade-off between the
aim to have a clear versioning of services and a delay in
the provisioning of new functionalities. On the one hand,
there is the possibility to create a complete bundle of services
which are released together so that it can be assured that
these services are interoperable. As the installation of such
a complete bundle of services is quite time consuming, such
a kind of release can only happen with a period of several
months. A drawback is that new functionalities or new services
are not provided until the time of a new release so that new
functionalities do not become available. Here, an additional
release method for early adoption may be helpful.

b) Interaction testing:The individual testing of services
has to be enhanced with a testing of their collaboration. For
doing so, the external specifications of the service functionality
(as NMWG [3] descriptions in perfSONAR) have to be applied
to construct appropriate test cases.

c) Documentation requirements:For the services a set
of documents has to be provided including installation instruc-
tions, functionality and usage documentation, and contactdata.

d) Visualization tool release:Since the measurements
are often of a limited usefulness without visualization tools,
release management for visualization tools has to be part ofthe
overall release management. In addition to searching for bugs
in the implementation, release management for visualization
tools has to ensure that the tools also provide functionalities
that are appropriate for getting the view on the measurement
data.

e) MDM pilot requirements:In the GN2 project a rollout
of services is going to be fixed as part of the project contract.
Therefore, the release management has to be compliant with
the constraints that are agreed. For instance, the contractwill
specify conditions to ensure the maintenance over several
years.

III. R ELATED WORK

In the following the contributions of existing recommenda-
tions for service quality assurance are examined with respect

to the requirements. These can be decomposed into software-
specific guidelines and service management frameworks.

A model that has proven to be useful in practice is the de-
velopment model for the FreeBSD operating system [4] which
allows for the contribution of several thousand developers.
Approximately 300 of those have write access to the project’s
code versioning system (CVS), while the overall development
is run by a small group of senior engineers. The development
code base is split up into current, stable and release branches.
For each release three time periods of 15 days are applied for
checking the code.

The FreeBSD project is a very advanced project so that
its release management can be regarded as mature. It has
therefore been selected as basis for release management in
perfSONAR where the time periods and branch concepts have
been adopted. However, extensions are necessary with respect
to the loosely-coupled development resulting from the SOA
and further constraints.

One important aspect of quality assurance are testing meth-
ods. It is distinguished between white box and black box
testing where internal knowledge about the implementation
about a component is used or not. For Java which is the
programming language used for the majority of perfSONAR
services the JUnit framework [5] exists which can be applied
to write automated tests for Java classes and methods. Apart
from this white box testing, black box testing is relevant to
perform interactions as specified in the functionality of each
service.

The IT Infrastructure Library (ITIL) [6] is a collection of
best-practice recommendations for IT service providers which
is already widely adopted in the industry. Within its Service
Support Set it contains a release management process which
has however a different focus as the one in our scenario. The
aim of ITIL is to manage the installation of new software
(or other resources) in an organization, which is usually
not developed by organization itself, and its effects on the
services provided to users. Nevertheless, the recommendations
are useful for organizations that adopt perfSONAR. In the
following months it will be examined whether recommenda-
tions for quality indicators in COBIT (Control Objectives for
Information and related Technology) [7] can be helpful for
quality assurance in perfSONAR.

IV. PERFSONAR RELEASE MANAGEMENT PROCESS

The release management process of perfSONAR which is
specified with respect to the requirements in Section II is
presented in the following. It is explained where related work
has been applied and where extensions have been necessary.

A. Release of Web Services

The release of the perfSONAR web services comprises
guidelines for groups involved in the development, release
types, code development phases and in particular for the
testing methods.



1) Group Definitions: The perfSONAR source code is
publicly available in a Subversion (SVN) [8] repository which
allows for unrestricted read access. It has replaced an initially
used CVS to profit from the advanced features of the system.
In order to be able to manage the code quality, the write access
is limited according to the group concept which is an extension
of FreeBSD groups.

TheSteering Committeedecides about the general direction
of the perfSONAR development, i.e. which services and ser-
vice functionalities should be developed, who can get involved
in the project and about principle changes of the project. It
also decides about granting write access to the repository.The
Steering Committee has dedicated a smaller team of three
people to manage the release process of services which is
calledRelease Engineering Team.

The Authorized Code Committersgroup is composed of
developers (approximately 15) that work on perfSONAR web
services and therefore are allowed to change the code in
the repository. The developers are responsible for white box
testing their own code.

The Testing Teamwhich is responsible for the functional
testing of services is currently composed of two people who
are only occupied with testing. In addition to giving recom-
mendations for white box testing, the Testing Team writes tests
for the black box testing and interacts with the code developers
to remove bugs that are witnessed when executing the tests.

A dedicatedDocumentation Teamis going to be installed
in the future to ensure the quality of the documentation.

2) Micro Releases and perfSONAR Bundle Releases:For
the first release of perfSONAR a release process similar to
FreeBSD has been examined which results in the provisioning
of a complete set of services at the same time.

However, it has turned out that this method is not suitable
for perfSONAR where we have a dedicated team of software
testing experts. Therefore, the idea is that the services are
tested on an individual basis as described below and can
be released in so calledMicro Releases. A Micro Release
therefore means that the service is fully tested (internally and
functionally), but that it is not tested for collaboration with
other services. These releases aim at early adopters who are
interested in advanced features of a particular service.

An additional process calledHand Over Processhas been
installed to combine individually released services intoperf-
SONAR Bundle Releases. For the hand over, several informa-
tion templates have to be completed as a prerequisite for the
release.

a) Functional Specification:This document contains se-
mantical information about the functionalities of a service.
It should be started early in the service development and
continuously maintained.

b) Interface Specification:For testing and users who
would like to write their own clients the detailed interface
specification is the basis for their work. It describes the
exact syntax of the XML queries that are supported by the
perfSONAR web service.

perfSONAR
service X

development
team 1

Micro Release
service X

perfSONAR
service Y

development
team 2

perfSONAR
service Z

development
team 3

Hand Over Process

perfSONAR Bundle Release

Micro Release
service Y

Micro Release
service Z

Fig. 2. Two kinds of releases in perfSONAR: Micro Releases and Bundle
Releases)

c) Installation Actions:For installing a perfSONAR web
service the steps that have to be carried out are explained in
this document. The bundling in the hand over process will
combine these documents because a unified installation of
perfSONAR is targeted.

d) Metadata Configuration and Sample Configuration:
The configuration of an installed service makes use of the first
document, while some examples from early adopters are given
in the additional samples document.

For the hand over of a perfSONAR Bundle Release addi-
tional tests are necessary. These relate to the installation of
services where it necessary to make sure that services can be
easily installed. Such tests also have to consider the possibility
that services may be installed on the same machine which
should not lead to unforeseen conflicts.

Another kind of testing is also needed as this point to verify
the collaboration of services in the bundle to achieve common
goals. This aspect is related to the SOA and should examine
workflows as specified by typical use cases.

3) Code Development Phases for Micro Releases:In the
code development for perfSONAR three code development
branches are distinguished. The CURRENT branch contains
the newest versions of the services being developed. The
STABLE branch contains tested versions of the services and
is available as weekly snapshot for interested parties. The
STABLE branch is the basis for the creation of releases which
go later into a special RELEASE branch. This naming has
been adopted from FreeBSD.

FreeBSD has also been the source for designing three phases
for the Micro Releases as depicted in Fig. 3.

a) MFC sweeps period:New releases of perfSONAR
web services are derived from the STABLE branch at individ-
ual time intervals for the services. The Micro Release process
starts 45 days in front of the release date and is announced to
all developers after it has been previously discussed with the
Release Engineering Team. During the next 15 days developers
usually perform so called MFC (“merge from CURRENT”)



code freeze
in 15 days

announcement

release
branch
creation

target
release

date

−45

day

MFC code sweep

−30

code slush

−15

code freeze

0

Fig. 3. Code development phases in perfSONAR (refinement of [4])

sweeps which means that (white-box) tested code from the
CURRENT branch is transferred to the STABLE branch. This
is the last possibility to perform functional changes.

b) Code review period:Thirty days before the antici-
pated release, the source repository enters a “code slush”.
During this time, all commits to the STABLE branch must
be approved by the Release Engineering Team. The kinds of
changes that are allowed during this 15-day period include
bug fixes, documentation updates, security related fixes, and
changes the Release Engineering Team feels are justified given
the risk. Tests are performed by the Testing Team.

c) Testing period (Micro Release):After the 15 days of
the code slush, a release candidate is released for widespread
testing and the code enters a code freeze where it becomes
much harder to justify new changes to the system unless a
serious bug-fix or security issue is involved. During the code
freeze, at least one release candidate is released per week and
tested by the community until the final release is ready. After
approval by the Release Engineering Team, the Micro Release
is announced.

4) Phases for the Hand Over Process:Phases are also
defined for the Hand Over Process which are needed to ensure
the collaboration of the web services.

a) Selecting services period:The release process of
perfSONAR bundles starts with the selection of services that
go into the bundle. Usually, a bundle will consider updates of
those services that have been part of previous bundles, but also
new services for which Micro Releases have been performed.
As a prerequisite for the acceptance of a service, the five
documents described above have to be delivered. These are
compiled into summary use cases and installation instructions.
Initially, a period of four months has been envisioned for the
frequency of perfSONAR Bundle Releases.

b) Workflow and installation testing period:Similar to
the code review period for Micro Releases, the Testing Team is
taking care of testing the services which is done with respect to
verifying the collaboration among services and for testingthe

joint installation procedures (Ant targets). Here, e.g. problems
related to dependencies on software packages can be detected.

c) Testing period (Bundle Release):A testing period for
early adopters of perfSONAR Bundle Releases comparable to
the testing period for individual services is also foreseenfor
bundle releases. Based on the experience from the perfSONAR
release 2.0, testing periods of 25 days each are needed for
workflow and installation testing and for the testing or release
candidates.

5) Testing Methods:For Micro Releases both white box
and black box testing are applied. For the white box testing
of services JUnit tests are used which are written in parallel
to the code development. The JUnit framework is a mighty
framework and turned out to be useful for this purpose. These
tests are performed by the code developers on their own for
which guidance is giving by the testing team.

Conceptually more interesting is the black box testing part
where the XML interactions that have been implemented are
tested. It has been decided to categorize the tests according to
four criteria.

1) Tests with allowed values which are typically encoun-
tered. These tests are useful to check the compliance
with functionality semantics.

2) Special tests with border values which are often causing
problems like “off-by-one” in arrays.

3) Tests with not allowed values, both near the border and
far away from the border to examine whether the service
responds with a predefined error message.

4) Some tests are also needed for checking the error
messages on wrong syntax in the XML query generation.

Due to the exponential growth in the number of possible
tests with respect to the number of parameters, a subset of
tests has to be defined. In perfSONAR this is done according to
the possible interactions so that a sufficient of number of tests
for the parameters in the interactions are performed. Some
tests with wrong syntax are also carried out for the service in
general.

Similar to JUnit the functional tests in perfSONAR are
written in Java classes so that they are available also for the
checking the effects of changes lateron.

The white box and black box testing described so far are
applicable for the Micro Releases. Additional tests are needed
for the Bundle Releases where the descriptions of complex
workflows that involve multiple services are taken as basis.
These workflows are used to construct more complex test cases
involving several services.

B. Release of Visualization Tools

The release of visualization tools that make use of the
perfSONAR services is going to be addressed in the next
months before the MDM pilot (see Section VI) starts. The aim
is that visualization tools are available for the implemented
web services so that the benefit arising from the execution of
measurement is enhanced with respect to the user needs.

The release process of the visualization tools is going to
run in parallel with the development of services. Once stable



branches are created for services, the visualization tool devel-
opment will target to be able to collaborate with the updated
services. Here, it is distinguished between minor updates and
new functionalities/new services, where the latter ones require
a more long term preparation (three months advance planning).

For testing the visualization tools, the use of automated
GUI testing tools requires much effort so that it has been
decided to perform manual tests of the GUIs instead. For
each visualization a special testing document is going to be
provided where tests that should be carried out are described.
For testing the internals of a visualization tools, methodslike
JUnit also have to be applied.

One thing that makes the development of visualization tools
a bit less critical is that the tools do not require time consuming
updates by the user. The current tools either use the Java
mechanism “JavaWebStart” to automatically download the
newest version from the server or run completely in a Web
browser where the user does not have to install anything.

V. EXPERIENCES FROM THEFIRST RELEASES

A first release of perfSONAR became available in July
2006, while the second release has been provided in March
2007 (see Fig. 9). In the following the services being part of
the releases are briefly explained and the lessons learned are
summarized. Furthermore, two examples from the functional
testing are provided.

A. perfSONAR 1.0 Release

The first release of perfSONAR has contained theRound
Robin Database [9] Measurement Archive (RRD MA)service
and theLookup Service (LS). The RRD makes utilization data
available to the perfSONAR framework by implementing a
wrapper around a special kind of database. The LS is a major
building block for the flexibility of the framework and provides
information about currently available other services.

Lessons learned:The installation of these services turned
out to be a major difficulty in the adoption of perfSONAR. It
has not been possible that the two services share an installation
of the Tomcat [10] application server which has resulted in
some misunderstandings. These experiences have led to the
adoption of installation testing as part of the hand over process.

The Testing Team had some difficulties building the func-
tional testing scripts, due to the lack of documentation pro-
vided by the development teams. The Release Engineering
Team has learned that it is necessary to ask the developers
of the chosen services for detailed documentation about each
possible input accepted or output generated by each service,
and which parameters are mandatory and which are optional.

Another lesson was that the production of release candidates
is a very important part of the release process, mainly because
of the bugs and other issues found by the community of users
and early adopters that installed those release candidates.

User feedback has shown that the installation of basic
software needed by the services (Axis, eXist, Tomcat, etc.)
was still too complicated. The Release Engineering Team has
decided that it is necessary to build an automatic installation

mechanism for these dependencies, which is a solution ideal
for users, or to use package management solutions. Lack
of information and automation concerning the configuration
of the services was another issue pointed out by users of
perfSONAR, and it was also something to improve on the next
release, both on the documentation and programming sides.

To tackle the overall feeling that perfSONAR was too
difficult to install, the Release Engineering Team proposed
that installation steps have to be consistent for all services,
and comprise four steps: 1. pre-install, 2. configure, 3. deploy,
4. test. Furthermore, every service has to provide separated
installation scripts that automate each step, and then a bundle
installation script is going to function as a wrapper aroundthe
individual service installers.

B. perfSONAR 2.0 Release

In addition to updates of the two services released as part
of perfSONAR 1.0, the second release has included four
additional services. TheSQL (Structured Query Language)
MA has similar capabilities as the RRD MA, but is a wrapper
around another kind of database and can provide layer 2
status data in addition to the utilization data. The Telnet/SSH
Measurement Point (Telnet/SSH MP) is a service that executes
queries to Cisco or Juniper routers within a network and
translates common commands into specific commands for the
router type. The Command Line Measurement Point (CLI
MP) is a wrapper around a set of testing tools such as ping
and traceroute. It can also make use of BWCTL (BandWidth
ConTroLer) tests of the available bandwidth for which also
a special service, the BWCTL Measurement Point (BWCTL
MP) has been included into the release.

Lessons Learned:In this release, the documentation written
by the development teams and given to the Testing Team was
greatly improved, but the Testing Team was still not satisfied,
mostly with the level of detail on documentation about result
and error codes of each service, and of the explanation of
the business logic behind a service. It was very important
to use a bug reporting tool, Bugzilla [11], to help on the
the flow of information between the Testing Team and the
Development Teams, to control the bugs assigned to each
version of each individual service, and to be able to follow the
resolution of each issue. Something that will be investigated
for the next release is the capacity of this tool to avoid
the duplicated reporting of bugs using a matching to already
reported problems.

During this run of the release process, it was evident
that a release specification document has to be written by
the Release Engineering Team together with a Development
Team Leader, clearly specifying what is expected from the
developers in the next release, including software features,
installation, configuration, documentation and what versions
of basic software are going to be used.

Even though the bundle installation process was greatly im-
proved with the lessons learned from the first release, thereis a
need to further enhance the ease of installation of each service,
namely trying to make the installation questions identicalfor



all services, and improving the stitching part (configuration)
of each service. A software update functionality also is going
to be studied, so that users will not have to install the whole
new package when only a part of it has changed on a release.

Testing examples:In addition to the general lesson learned,
two examples of errors and behavior not coherent with the
perfSONAR specifications are given in the following which
have been resolved in the functional testing. The examples
relate to the Lookup Service and the SQL Measurement
Archive Service.

The Lookup Service is a crucial part of the perfSONAR
framework, as it enables end users to locate perfSONAR
services according with their capabilities or their location.
Each service may use LS requests to register (LSRegister) and
therefore announce its presence, deregister (LSDeregister) or
update a previous registry (LSUpdate). End users can query
the service using XPath/XQuery expressions encapsulated in
a request especially defined for this functionality (LSQuery).

The SQL MA provides access to a relational database
containing information about the L2 Path Status and utiliza-
tion metrics. An end user can use the service for retrieving
measurements regarding a certain interface or path directly or
with the help of a key structure which was previously retrieved
by the service. In addition the service, with the help of a
specially defined request, provides users the ability to store
new measurements inside the relational database.

In the case of the LS, functional testing helped in revealinga
significant error in the implementation and a possible security
problem. The aim of this test case was to test the update
functionality of the LS. An update request was constructed
aiming to update a previously made registry, describing a
perfSONAR service. The request used the previously stored
access point element of the service as a key, in order to
modify the registry by changing the access point value and
some description data. The request is shown in Fig. 4.

The service response is depicted in Fig. 5. It is informing
us that the update process was a success and the registry now
contains the new access point and data. The service should
also erase the old registry and replace it with the new updated
registry. Relying only in the response from the service would
be misleading, since the response does neither provide any
proof if the changes in the database containing the registry
have been made correctly nor if the old registry was deleted.In
order to check this, access to the database is needed afterwards,
firstly to check if the updated data exist and secondly to check
if the old registry was deleted. A piece of code doing just
that is shown in Fig. 6. This code is using internals of the
implementation of the LS and has therefore to be regarded
as white box testing code, in contrast to the execution of the
queries before. It helps to pinpoint to issues in the internal
realization of the service and has been written in collaboration
with the service developer.

Let us explain what the previous piece of code actually does.
At first, queries are constructed in order to test if the new
access point and data are stored in the database. Also queries
are constructed to check if the old access point and data were

deleted. Then, the results of these queries are retrieved from
the database and the result code of the response is checked.
Afterwards, the code checks if any results were returned by
the database regarding the new access point and if there are
any results about the old access point. If no results are returned
for the new access point or if results are returned for the old
access point, the test is a failure. Next, the results regarding
the new access point are checked against the expected value.
If this is also true, then the tests moves forward and checks the
data in a similar way as the access point. In order for the test
to be successful, the retrieved new data value must match to
the expected data value and there should be no results returned
regarding the old data. If all checks are successful, the tests
returns true and the service is considered to have passed that
particular test.

In the case of our service the test failed, because the old
access point and the old data were not deleted and subse-
quently co-existed with the new access point and data. This
could lead end users to obtain wrong information about perf-
SONAR services thus making the LS unreliable. Furthermore,
additional checking revealed that these old entries were never
removed from the database, as it should have happened with
the use of an Clean Up scheduler which has been integrated
into the service. So the former entries became transparent to
the service, occupying valuable resources and kept growing
after such similar update. The danger of spending system
resources is clearly also a security threat as the exploitation of
this weakness of the service can bring the service down or the
entire server. After the bug was reported the developer fixed
the problem and provided another Release Candidate (RC).

perfSONAR specifications demand that if an error occurs
in the service or if a request sent by a user is not properly
constructed, the service should fail “gracefully”; meaning that
the service should respond with a response message containing
a result code describing the type of error or malfunction that
has happened, rather than the user facing a SOAP (Simple
Object Access Protocol, [12]) error on his screen. Although
testing for this specification was not the purpose of the
constructed tests, the compliance of the services with the
former specification was indirectly tested, since if the service
did not fail gracefully under the tested conditions, this would
be immediately apparent to the tester. Such incident occurred
during the functional testing of the SQL MA. A test request
was constructed in order to check the behavior of the service
in cace of malformed or not properly constructed requests.
The test expected the service to response with a result code
specifying what went wrong. Instead a SOAP error appeared
thus revealing that the service did not fail “gracefully”. The
request is shown in Fig. 7.

The request should have contained an event type element
inside the metadata element. In the absence of such element
the service should respond with a response message containing
a result code and describing what went wrong. The proper
response is shown in Fig. 8.

Instead the user faced a SOAP error on his screen. Produc-
ing proper responses containing proper result codes is impor-



<?xml version="1.0" encoding="UTF-8"?>
<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" xmlns:perfsonar="http://ggf.org/ns/
nmwg/tools/org/perfsonar/1.0/" xmlns:psservice="http://ggf.org/ns/nmwg/tools/org/perfsonar/
service/1.0/" xmlns:nmwgt="http://ggf.org/ns/nmwg/topology/2.0/" xmlns:nmtm="http://ggf.org/ns/
nmwg/time/2.0/" xmlns:netutil="http://ggf.org/ns/nmwg/characteristic/utilization/2.0/" xmlns="
http://ggf.org/ns/nmwg/base/2.0/" type="LSRegisterRequest" id="msg1">
<nmwg:metadata id="serviceLookupInfo0">
<nmwg:key>
<nmwg:parameters id="param1">
<nmwg:parameter name="lsKey">http://update_request_2_1_0.net:8080/axis/services/MA
</nmwg:parameter>

</nmwg:parameters>
</nmwg:key>
<perfsonar:subject id="commonParameters">
<psservice:service id="serviceParameters">
<psservice:serviceName>My_MA</psservice:serviceName>
<psservice:accessPoint>http://new_update_request_2_1_0.net:8080/axis/services/MA
</psservice:accessPoint>
<psservice:serviceType>MA</psservice:serviceType>
<psservice:serviceDescription> A testing MA</psservice:serviceDescription>

</psservice:service>
</perfsonar:subject>

</nmwg:metadata>
<nmwg:data id="data0" metadataIdRef="serviceLookupInfo0">
<nmwg:metadata id="meta1">
<netutil:subject id="subj1">
<nmwgt:interface>
<nmwgt:hostName>xyz.sdf.edf.edu</nmwgt:hostName>
<nmwgt:ifName>uknown</nmwgt:ifName>
<nmwgt:ifDescription>not_initial_data</nmwgt:ifDescription>
<nmwgt:ifAddress type="ipv4">123.23.34.0</nmwgt:ifAddress>
<nmwgt:direction>in</nmwgt:direction>
<nmwgt:capacity>1000000000</nmwgt:capacity>

</nmwgt:interface>
</netutil:subject>
<nmwg:eventType>utilization</nmwg:eventType>

</nmwg:metadata>
</nmwg:data>

</nmwg:message>

Fig. 4. NMWG request for the Lookup Service

<?xml version="1.0" encoding="UTF-8"?>
<nmwg:message id="msg1_resp" messageIdRef="msg1"
type="LSRegisterResponse" xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
<nmwg:metadata id="resultCodeMetadata">
<nmwg:eventType>success.ls.register</nmwg:eventType>
<nmwg:key id="localhost.localdomain.-6cb9e676:10f3cae1b13:-7ee6">
<nmwg:parameters id="localhost.localdomain.-6cb9e676:10f3cae1b13:-7ee5">
<nmwg:parameter name="lsKey" value="http://update_request_2_1_0.net:8080
/axis/services/MA"/>

</nmwg:parameters>
</nmwg:key>

</nmwg:metadata>
<nmwg:data id="resultCodeData" metadataIdRef="resultCodeMetadata">
<nmwg:datum value="Data has been registered with key [http://update_request_2_1_0.net:8080
/axis/services/MA]"/>

</nmwg:data>
</nmwg:message>

Fig. 5. NMWG response for the Lookup Service



// Retrieving result code
String resultCode = ((response.getRootElement()).getChild("metadata", nmwg)).getChild
("eventType", nmwg).getText();

// creating the old access point
String accessPointOld = "http://update_request_" + testCase + "_" + subCase + "_0.net:8080
/axis/services/MA";

// creating the new access point
String accessPointNew = "http://new_update_request_" + testCase+ "_" + subCase + "_0.net:8080
/axis/services/MA";

// creating the query to check the new access point
String metadataQueryNew = "for $a in /nmwg:store/nmwg:metadata//psservice:service[psservice:
accessPoint=’" + accessPointNew+ "’] return $a/psservice:accessPoint/child::text()";

// creating the query to check the old access point
String metadataQueryOld = "for $a in /nmwg:store/nmwg:metadata//psservice:service[psservice:
accessPoint=’" + accessPointOld + "’] return $a/psservice:accessPoint/child::text()";

// creating query to check the old data
String dataQueryNew = "for $a in /nmwg:store/nmwg:metadata let $metadata_id:= $a/@id let
$data := /nmwg:store/nmwg:data[@metadataIdRef=$metadata_id]"+ " where $a/perfsonar:subject/
psservice:service[psservice:accessPoint=’" + accessPointNew + "’] return $data/nmwg:metadata";

// creating query to check the new data
String dataQueryOld = "for $a in /nmwg:store/nmwg:metadata let $metadata_id:= $a/@id let $data
:= /nmwg:store/nmwg:data[@metadataIdRef=$metadata_id]" + " where $a/perfsonar:subject/psservice:
service[psservice:accessPoint=’" + accessPointOld + "’] return $data/nmwg:metadata";

ResourceIterator meta_ItNew;
try {
meta_ItNew = dbClient.queryDB(metadataQueryNew).getIterator();
ResourceIterator meta_ItOld = dbClient.queryDB(metadataQueryOld).getIterator();
ResourceIterator data_ItNew = dbClient.queryDB(dataQueryNew).getIterator();
// System.out.println(getResult(data_ItNew));
ResourceIterator data_ItOld = dbClient.queryDB(dataQueryOld).getIterator();

// checking if the result code is the appropriate
if (resultCode.equals("success.ls.register")) {

// checking to see if the old access point is deleted
// and the new access point is registered

if ((meta_ItNew.hasMoreResources())&& (!meta_ItOld.hasMoreResources())) {
if (meta_ItNew.nextResource().getContent().equals(accessPointNew)) {

// checking to see if the new data are in place
if ((data_ItNew.hasMoreResources()) && (!data_ItOld.hasMoreResources())) {
String storedData = getResult(data_ItNew);

//Are the stored data the updated data?
if (data.equals(storedData)) {
return true;

} else return false;
} else return false;

} else return false;
} else return false;

} else return false;
} catch (XMLDBException e) {
e.printStackTrace();

}

Fig. 6. Code example for white-box testing the internals of the Lookup Service



<?xml version="1.0" encoding="UTF-8"?>
<nmwg:message xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/" xmlns:nmtl2="http://ggf.org/ns/
nmwg/topology/l2/3.0/" xmlns:nmwgtopo3="http://ggf.org/ns/nmwg/topology/base/3.0/" xmlns:
select="http://ggf.org/ns/nmwg/ops/select/2.0/" xmlns:ifevt="http://ggf.org/ns/nmwg/event/
status/base/2.0/" type="MeasurementArchiveStoreRequest">
<nmwg:metadata id="meta1">
<nmwg:subject id="subject1">
<nmtl2:link>
<nmtl2:globalName type="logical">PSNC-DFN-MUE-003</nmtl2:globalName>

</nmtl2:link>
</nmwg:subject>

</nmwg:metadata>
<nmwg:data id="data1" metadataIdRef="meta1">
<ifevt:datum timeType="Unix" timeValue="1170878409">
<ifevt:stateAdmin>PSNC</ifevt:stateAdmin>
<ifevt:stateOper>up</ifevt:stateOper>
</ifevt:datum>

</nmwg:data>
</nmwg:message>

Fig. 7. NMWG request for the SQL MA

<?xml version="1.0" encoding="UTF-8"?>
<nmwg:message id="localhost.localdomain.-73a96cb2:111735abda6:-2f6c_resp"
messageIdRef="localhost.localdomain.-73a96cb2:111735abda6:-2f6c"
type="MeasurementArchiveStoreResponse" xmlns:nmwg="http://ggf.org/ns/nmwg/base/2.0/">
<nmwg:metadata id="resultCodeMetadata">
<nmwg:eventType>error.ma.query</nmwg:eventType>

</nmwg:metadata>
<nmwg:data id="resultDescriptionData_for_resultCodeMetadata"
metadataIdRef="resultCodeMetadata">
<nmwgr:datum xmlns:nmwgr="http://ggf.org/ns/nmwg/result/2.0/">SQLTypeMAServiceEngine.
getStoreKey: eventType in the request metadata is empty</nmwgr:datum>

</nmwg:data>
</nmwg:message>

Fig. 8. NMWG response for the SQL MA

tant to perfSONAR services in the terms of user friendliness. A
user facing a SOAP error has many difficulties understanding
what went wrong or if he is to blame for this behavior. It is
also important for services using perfSONAR services such as
visualization tools to have a response under any circumstances
with a result code, since a SOAP error is hard to interpret.
The developer of the service was informed of the service
misbehavior and produced another RC fixing the problem.

VI. MDM S ERVICE AND PILOT PHASE

Apart from depicting the perfSONAR releases, Fig. 9 shows
the timeline of the pilot instatllation of perfSONAR services in
several National Research and Education Networks (NRENs)
and GEANT2 over the following months. The aim of the
deployment is to collect feedback from people working in
the Network Operation Centers (NOCs) and to refine the
services for a permanent installation. A first phase from June
till October will include five NRENs, while 11 NRENs in
sum are going to operate the services in the second phase
from December 2007 till April 2008. The final widespread
deployment in Europe is then planned for the period starting
in June 2008.

FCCN has volunteered to install perfSONAR services al-
ready in the first phase and has opted for the variantManaged
Service where maintenance of the service is operated by
the perfSONAR group. The installation will include three
servers for BWCTL tests of available bandwidth and also for
remotely managed measurements of delay, jitter, and packet
loss. Furthermore, a server for exporting layer 2 status data
making use of theSQL MA and a server for installing the
SSH/Telnet MP is going to be delivered. In addition to a server
for providing utilization data using the RRD MA, all services
will be registered with an LS.

The CNM visualization tool will provide a dedicated FCCN
map for use by FCCN member institutions and interested end
users. All services will be accessible by perfsonarUI, another
visualization tool.

VII. C ONCLUSION AND FUTURE WORK

In the paper the release management process in perfSONAR
has been presented which aims at ensuring a high quality of
the developed web services and visualization tools. Due to
the SOA of the project additional considerations have been
necessary to ensure for the reliable collaboration of the devel-
oped services. As SOAs have attracted an increasing interested



Pilot phase (second part)
with 11 NRENs + Geant2

Pilot phase (first part)
with 5 NRENs + Geant2

perfSONAR prototype
phase

perfSONAR release 2.1
(together with visualization

release)

month

Jul 06

Jan 07

Jul 07

Operational phase

perfSONAR release 1.0

perfSONAR release 2.0

Jan 08

Fig. 9. Timeline for perfSONAR releases and MDM pilot deployment

of the previous years, the release management process with
its recommendations for micro and bundle releases, necessary
documentation, and testing methods is also valuable input for
related projects.

REFERENCES

[1] “perfSONAR project,” http://www.perfSONAR.net.
[2] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti,R. Lapacz,

N. Simar, M. Swany, S. Trocha, and J. Zurawski, “Perfsonar: Aservice-
oriented architecture for multi-domain network monitoring,” in Proceed-
ings of 3rd International Conference on Service-Oriented Computing
(ICSOC 2005). Amsterdam, The Netherlands: ACM, December 2006.

[3] “Network measurements working group (NMWG), Open Grid Forum,”
http://nmwg.internet2.edu/.

[4] M. Stokely, “FreeBSD Release Engineering,” http://www.freebsd.org/-
doc/en US.ISO8859-1/articles/releng/article.html.

[5] “JUnit, Testing Resources for Extreme Programming,”
http://www.junit.org/index.htm.

[6] OGC (Office of Government Commerce), Ed.,Service Support, ser. IT
Infrastructure Library (ITIL). Norwich, UK: The Stationary Office,
2000.

[7] “Common Objectives for Information and related Technology (COBIT
4.0),” http://www.isaca.org/cobit.

[8] “Subversion (SVN),” http://subversion.tigris.org/,CollabNet.
[9] “Round robin database tool homepage,”

http://people.ee.ethz.ch/ oetiker/webtools/rrdtool/.
[10] “Apache Tomcat, Apache Jakarta project,”

http://jakarta.apache.org/tomcat/.
[11] “perfSONAR’s Bugzilla installation,” https://bugzilla.perfsonar.net/.
[12] “Simple Object Access Protocol, World Wide Web consortium,”

http://www.w3.org/2000/xp/Group.


