
Network	Automation	Tools	and	Practices	
October	15,	2017,	1:00-5:00		
Pacific	E	on	Pacific	Concourse	Level
	
Agenda	
	
Welcome	(Linda	Roos,	Internet2)	
Brief	Overview	of	Network	Automation	(Steven	Wallace,	Indiana	University)	
Openflow	Retrospective	(Ed	Balas	and	A.J.	Ragusa,	Indiana	University	GlobalNOC)	
Network	Automation	at	KINBER	(Mike	Carey,	KINBER)	
Network	Automation	with	Ansible	(Frank	Seesink,	WVnet)	
Finding	or	Creating	Network	Savvy	Programmers	(A.J.	Ragusa	and	Ed	Balas,	Indiana	University	
GlobalNOC)	
Discussion	
Next	Steps	
	

	
	
	
	

Brief	Overview	of	Network	
Automation	

	
	

Steven	Wallace	

APAP

APAP

APAP
APAP

A bazillion
Linux Servers

Ansible
Rsync
Puppet
Chef

A bazillion
White boxes

	
	
	
	

Openflow	Retrospective	
	
	

Ed	Balas	and	AJ	Ragusa	
Indiana	University	Global	NOC	

Automation pre SDN / OF
buzz

• Does not require god products or big architectures

• config generation / push 1997

• accept filters etc

• Autotriage using craft interfaces 1998

• layer2 FDDI path discovery and audit

• VLAN provisioning portal

• Sherpa

OpenFlow
Considerations

(that apply to other tech too)

Looking back at a talk I gave 2 years ago on

March 2, 2015 as part of the OIN workshop

Are you sure you ?
• You are now the

System Integrator
• control plane separation price

• vendor implementations are

• buggy

• incomplete

• poor performing

when, not if If, NOT when
• OpenFlow ideal for use cases

like SciPass

• 5-tuple based control

• multiple output actions

• When depends on use case and
evolution of ecosystem

• apps

• switches

going deeply
programmable?

• Don’t reinvent the wheel

• MPLS or BGP

• pay attention to cost of
integration

• Not a large number of apps /
controllers out there

• Not a lot of interop testing

• Need your own test lab

Forklift upgrade of entire
fabric unlikely

• follow incremental strategy

• look at hybrid or appliance
mode

• identify unserved niches

What you need to know
about OpenFlow Switches

• nobody supports the entire spec

• many details subject to interpretation

• controllers are trusted and can act as DoS
vector

• dont assume data plane performs well

• control plane performance may disappoint

• 100g deep buffer rare

Testing

• anytime every time something changes

• have seen code fail in production due to libssl upgrade —
> cypher support

• firmware bugs specific to type of line card

• yes yes you do need to test 100g and the 10g

• not all modules are supported in OpenFlow Mode

Testing
new switch code rev

• 30 hrs of engineer time if things go smooth

• 40+ hrs if an issue is discovered

• averaged about 1 test per month

• the amount of time to perform test has been growing

Testing
apps we wrote

• 30 hrs of testing if things go smooth

• double if non-trival fix required

• 4 releases of OESS in last 6 months

• test time for this has been growing as well

• going back up with shift to MPLS

• we are working to improve automation

2 years later

What happened to
OpenFlow on AL2S

• Lack of support from vendors

• low quality hardware in one vendor

• lack of OF support in another

• swap out the wing while in flight

• now a single vendor network

• moved from OF to MPLS and Netconf

• slow and methodical process

Did Internet2 give up on
SDN?

• some may have drawn the wrong
conclusion here

What is Internet2 doing with
SDN

• SDN is a philosophy not a technology

• OESS still the way to provision AL2S

• now with Netconf and MPLS

• OpenFlow supported with Corsa using overlay

• the lack of advanced use cases is concerning

• cloud service orchestration

• tactical automation

• system disaggregation

Determining the Value of Network
Automation for Small Networks

SPEAKER Michael Carey KINBER (Keystone Initiative for Network Based Education & Research)

Determining the Value of Network
Automation for Small Networks

● Who is KINBER and How Does that Effect our Network Automation Strategy

● KINBER’s Automation Strategy

● Automation Tools & Partners

● Successes and Challenges

KINBER/PennREN
● 152 Connections

○ 2x 100G Connections
○ 27x 10G Connections

● 30-40G+ Egress Traffic
● Own 1800+ miles of fiber, 110 POPs
● Small Staff

○ 7 Full-Time
■ 3 Engineers including myself

○ Tier I (Service Desk) & II (1st Level Engineering) NOC Services contracted to GlobalNOC

KINBER Business Lifecycle
○ Seed
○ Startup
○ Growth

■ Engineering Resource Focus
● 80% of Engineering is Provisioning New Customers
● 15% is Tier III Break/Fix Situations
● 5% Network Enhancement Projects (Improvements, Better Services,

Better Responses)
■ Constant range of issues bidding for time

■ R&R
● Revenue
● Reputation

KINBER Automation Strategy
● Relate to Business Life Cycle & Business Processes

○ Provisioning
■ Faster Provisioning = Faster Revenue
■ Faster Provisioning = Better Customer Experience
■ Less Errors = Better Customer Service

○ Break/Fix
■ Better Data Collection = Quicker Problem Identification

KINBER Automation Strategy
● Provisioning

○ Network Design
○ Procurement
○ Network Configuration
○ Network Deployment
○ Certification of Services
○ Certification of Database Records

KINBER Automation Strategy –
Provisioning/Design

KINBER Automation Strategy - Design

KINBER Automation Strategy -
Provisioning

● Juniper EX3300/EX3400/MX-104
● 3rd Party Optics

KINBER Automation Strategy - Provisioning

Procurement Inventory Check-In Engineering

Build
Config

IP
Address in

lab

Upgrade
Firmware

Deployment

Asset Tag

Admin Assistant Admin Assistant Engineer Field
Tech/Engineer

Network Automation – Zero Touch Provisioning
● Partner

○ Juniper
● Tools

○ Zero-Touch Provisioning (ZTP)
● Process

○ Majority of our Node Expansion is Juniper EX Models off a Core Node
○ Can involve non-engineering staff powering up unit and plugging into

lab environment where ZTP performs an initial code upgrade and base
configuration load

Procurement Inventory Check-In Engineering

Build
Config

IP
Address in

lab

Upgrade
Firmware

Deployment

Asset Tag

Admin Assistant Admin Assistant Engineer Field
Tech/Engineer

Admin Assistant

Network Automation – Zero Touch Provisioning

DHCP Server

JUNOS Firmware Base Config Files

Cables/Power
Cords/Switch

Network Automation – Zero Touch Provisioning

TFTP Server

● Reallocated Engineering Time
● Reduced Configuration Time
● Faster Provisioning = Faster Revenue, Better Customer Experience

● Next Steps
○ Replicate in the field?
○ Improved Base Configuration
○ Email based alert – “Your Switch/Router is now ready”

Network Automation – Zero Touch Provisioning

Network Automation Tools and Implementation

Network Automation Tools and Implementation

Network Automation Tools - Provisioning
● Partner

○ GlobalNOC
● Tools

○ Dist-Tool
● Process

○ System-wide configuration changes
■ dist-tool --template VPLS_Service.json --node-name swt01.psup.net.pennren.net
■ dist-tool --template RE_Service.json --node-name rtr01.nbrd.net.pennren.net
■ dist-tool --template CIS_Service.json --node-name rtr01.acma.net.pennren.net

Network Automation Tools – Routing Provisioning
● Partner

○ Integration Partners
● Tools

○ Provisioning Application for Peering
● Process

○ Streamline process of adding new peers
○ Automate AS-SET

KINBER Automation Strategy – Break/Fix
● What break-fix steps can we improve on?

○ Initial Data Collection
○ Troubleshooting Commands

● BGP Session Drops…….
○ What does Tier I do?
○ What does Tier II do?

Network Automation Tools – Break/Fix
● Partner

○ GlobalNOC
● Tools

○ Dist-Tool
● Process

○ System-wide configuration changes
■ dist-tool --template BGP_Alarm.json –Service-ID PREN-S05413
■ dist-tool --template CPU_Alarm.json --node-name rtr01.nbrd.net.pennren.net
■ dist-tool --template UPS_Alarm.json --node-name ups01.psup.net.pennren.net

KINBER Automation Strategy – Break/Fix
● Reduce MTTR
● Better Customer Experience
● Better Utilize Tier II personnel (on-call hours)
● Train Tier I staff

Successes and Challenges
● Successes

○ Continous theme of “Benefits in Automation”
○ Metrics are starting to form to detail reasons for automation
○ Translating Ideas to Solutions for Business Purposes

● Challenges
○ Resources availability in Growth-Stage our the Company

■ Translating Ideas to Solutions

Network Automation Working Group?
● Share ZTP Templates and Design (And other vendor equivalents)

● Establish an Peering/IRR Toolkit that is easily portable across members

● Establish and share Break/Fix Scripts

Network Automation
with Ansible

Frank Seesink
v1.0

The greatest gift is that of time. This is my attempt to give you back some of yours.

History of Network
Management

History of Network
Management

• SNMP

History of Network
Management

• SNMP

“Simple” Network Management Protocol 

History of Network
Management

• SNMP

“Simple” Network Management Protocol 

• Oh, and “screen scraping”

DevOps

What is this DevOps of
which you speak?

• “DevOps (a clipped compound of
"development" and "operations") is a
software engineering practice that
aims at unifying software
development (Dev) and software
operation (Ops).” 
 
Source: https://en.wikipedia.org/wiki/DevOps

https://en.wikipedia.org/wiki/DevOps

In Plain English?

In Plain English?

The love child between systems/network
administrators and programmers

Configuration
Management Tools

So Why Ansible?

Ansible

The name "Ansible" references a fictional
instantaneous hyperspace communication
system (as featured in Orson Scott Card's
Ender's Game (1985),[9][10] and originally
conceived by Ursula K. Le Guin for her novel
Rocannon's World (1966)).[11] 

 
Source: https://en.wikipedia.org/wiki/Ansible_(software)

https://en.wikipedia.org/wiki/Ansible_(software)

Agent-based vs. Agent-less*

• CFEngine

• Chef

• Munki

• Puppet

• SaltStack 
 
 

• Ansible

Agent-based

Server

Terms:
Server == Puppet Master, Salt Master, etc.
Client== Puppet Agent, Salt Minion, etc.
Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-based

Server

Client

Client

Client

Terms:
Server == Puppet Master, Salt Master, etc.
Client== Puppet Agent, Salt Minion, etc.
Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-based

Server

Client

Client

Client

Terms:
Server == Puppet Master, Salt Master, etc.
Client== Puppet Agent, Salt Minion, etc.
Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-based

Server

Client

Client

Client

Terms:
Server == Puppet Master, Salt Master, etc.
Client== Puppet Agent, Salt Minion, etc.
Configuration files == (Puppet) catalog, Salt States (SLS), etc.

Also have terms like grains, pillars, etc. for Salt, for example.

Typically agents check-in every so often—default for Puppet is every 15 minutes, for Munki is once every 4 hours—to make sure they are up-to-date.

Agent-less

Server

Client

Client

Client

Agent-less

Server

Client

Client

Client

Agent-less

Server

Client

Client

Client

Advantages of
Agent-based

Server

Client

Client

Client

Advantages of
Agent-based

Server

Client

Client

Client

Advantages of
Agent-based

Server

Client

Client

Client

Advantages of
Agent-based

Server

Client

Client

Client

Typically agents check in, thus coming out through any firewalls vs. the server trying to come in. Of course, in a tightly regulated environment with proxy
servers, etc., this may require additional work, but often things “just work.”

Advantages of
Agent-based

Server

Client

Client

Client

Typically agents check in, thus coming out through any firewalls vs. the server trying to come in. Of course, in a tightly regulated environment with proxy
servers, etc., this may require additional work, but often things “just work.”

Advantages of
Agent-based

Server

Client

Client

Client

Salt Stack is different from other agent-based configuration management tools in that it creates a persistent connection back to the minions. This allows
for immediate execution of commands.
For example, you get a call that some of your users are experiencing issues getting to Google. With Salt, you could tell all of your minions to ping Google’s
servers and to report back. This gives you insight from across your network (and also gives you a kind of botnet of your very own!).

Advantages of
Agent-based

Server

Client

Client

Client

Persistent bus connection

Salt Stack is different from other agent-based configuration management tools in that it creates a persistent connection back to the minions. This allows
for immediate execution of commands.
For example, you get a call that some of your users are experiencing issues getting to Google. With Salt, you could tell all of your minions to ping Google’s
servers and to report back. This gives you insight from across your network (and also gives you a kind of botnet of your very own!).

Advantages of
Agent-less

Server

Client

Client

Client

Advantages of
Agent-less

Server

Client

Client

Client

Advantages of
Agent-less

Server

Client

Client

Client

Advantages of
Agent-less

Server

Client

Client

Client

SSH

Agent-less

Server

Client

Client

Client

Agent-less

Server

Client

Client

Client

*

Agent-less

Server

Client

Client

Client

*

Agent-less

Server

Client

Client

Client

*

* for clients which support Python, 
agent script sent through SSH 
tunnel to run on far end

Ansible 2.x
(currently v2.4)

Server

Ansible 2.x
(currently v2.4)

Server

SSH
• raw module
• network modules 

e.g., Ios, Junos, etc.

Network Modules
• A10

• ACI (Cisco)

• Aireos (Cisco)

• Aos

• Aruba

• Asa (Cisco)

• Avi

• Bigswitch

• Citrix

• Cloudengine

• Cloudvision (Arista)

• Cumulus

• Dellos10

• Dellos6

• Dellos9

• Eos (Arista)

• F5

• Fortios

• Illumos

• Interface

• Ios (Cisco)

• Iosxr (Cisco)

• Junos

• Layer2

• Layer3

• Lenovo

• Netconf

• Netscaler

• Netvisor

• Nuage

• Nxos (Cisco)

• Ordnance

• Ovs

• Panos

• Protocol

• Radware

• Routing

• Sros

• System

• Vyos

Source: http://docs.ansible.com/ansible/latest/list_of_network_modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html

Network Modules
• A10

• ACI (Cisco)

• Aireos (Cisco)

• Aos

• Aruba

• Asa (Cisco)

• Avi

• Bigswitch

• Citrix

• Cloudengine

• Cloudvision (Arista)

• Cumulus

• Dellos10

• Dellos6

• Dellos9

• Eos (Arista)

• F5

• Fortios

• Illumos

• Interface

• Ios (Cisco)

• Iosxr (Cisco)

• Junos

• Layer2

• Layer3

• Lenovo

• Netconf

• Netscaler

• Netvisor

• Nuage

• Nxos (Cisco)

• Ordnance

• Ovs

• Panos

• Protocol

• Radware

• Routing

• Sros

• System

• Vyos

Source: http://docs.ansible.com/ansible/latest/list_of_network_modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html

Network Modules (cont.)
Cisco IOS

• Ios

• ios_banner - Manage multiline banners on Cisco IOS devices

• ios_command - Run commands on remote devices running Cisco IOS

• ios_config - Manage Cisco IOS configuration sections

• ios_facts - Collect facts from remote devices running Cisco IOS

• ios_interface - Manage Interface on Cisco IOS network devices

• ios_logging - Manage logging on network devices

• ios_ping - Tests reachability using ping from IOS switch

• ios_static_route - Manage static IP routes on Cisco IOS network devices

• ios_system - Manage the system attributes on Cisco IOS devices

• ios_user - Manage the aggregate of local users on Cisco IOS device

• ios_vrf - Manage the collection of VRF definitions on Cisco IOS devices

Source: http://docs.ansible.com/ansible/latest/list_of_network_modules.html

http://docs.ansible.com/ansible/latest/list_of_network_modules.html

I am NOT idempotent!
Wait… what?

Idempotent

Source: “The Google”

Red Hat Ansible

Ansible (source) Red Hat Ansible Engine

AWX Red Hat Ansible Tower

Red Hat Ansible

Ansible (source) Red Hat Ansible Engine

AWX Red Hat Ansible Tower

Fedora RHEL

So THAT’s why
Ansible

Live Demo

Deeper Dive

System Requirements

System Requirements
• Control Machine Requirements

• Currently Ansible can be run from any machine with
Python 2 (versions 2.6 or 2.7) or Python 3 (versions
3.5 and higher) installed (Windows isn’t supported for
the control machine).

http://docs.ansible.com/ansible/latest/intro_installation.html#control-machine-requirements

System Requirements
• Control Machine Requirements

• Currently Ansible can be run from any machine with
Python 2 (versions 2.6 or 2.7) or Python 3 (versions
3.5 and higher) installed (Windows isn’t supported for
the control machine).

• Managed Node Requirements

• On the managed nodes, you need a way to
communicate, which is normally ssh. By default this
uses sftp. If that’s not available, you can switch to scp
in ansible.cfg. You also need Python 2.6 or later.

Source: http://docs.ansible.com/ansible/latest/intro_installation.html#control-machine-requirements

http://docs.ansible.com/ansible/latest/intro_installation.html#control-machine-requirements

Installing Ansible

Installing Ansible

• Yum (CENTOS/RHEL)

• Apt (Ubuntu/Debian)

• Pip

Installing Ansible

• Yum (CENTOS/RHEL)

• Apt (Ubuntu/Debian)

• Pip

$ sudo easy_install pip 
$ sudo pip install ansible

Installing Ansible

• Yum (CENTOS/RHEL)

• Apt (Ubuntu/Debian)

• Pip

$ sudo easy_install pip 
$ sudo pip install ansible
 
 
If for any reason you have issues, try: 
$ sudo -H pip install --ignore-installed --upgrade ansible

Running Ansible

Running Ansible
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

Running Ansible
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -m raw -a "command" -u <user> -k

Running Ansible
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -m raw -a "command" -u <user> -k

 
FAILS.

Running Ansible
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -m raw -a "command" -u <user> -k

 
FAILS.

No inventory file. This is a minimum requirement. 

Running Ansible
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -m raw -a "command" -u <user> -k

 
FAILS.

No inventory file. This is a minimum requirement. 

So we need to create an inventory file.

Running Ansible
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -m raw -a "command" -u <user> -k

 
FAILS.

No inventory file. This is a minimum requirement. 

So we need to create an inventory file.

Inventory files are plain text files which contain a list of devices
which you intend to manage with Ansible. It can be as simple as a
straight list of IP addresses. Inventory files can be formatted in
different ways, but a common one is the Windows INI file format. The
other common format is YAML, which is also the format used to write
Ansible Playbooks.

Simple Inventory File
10.1.1.1
10.1.1.2
10.1.1.3
node1.domain.com
node2.domain.com
…
last.item.com

Inventory File
[routers:children]
backbone-routers
gateway-routers

[backbone-routers]
backbone1 ansible_host=10.1.1.1
backbone2 ansible_host=10.1.1.2
backbone3 ansible_host=10.1.1.3

[gateway-routers]
gateway1 ansible_host=10.1.2.1
gateway2 ansible_host=10.1.2.2

[switches]
switch1 ansible_host=10.1.3.1
switch2 ansible_host=10.1.3.2
switch3 ansible_host=10.1.3.3
10.1.4.1
10.1.5.1

Inventory File

Host variable

[routers:children]
backbone-routers
gateway-routers

[backbone-routers]
backbone1 ansible_host=10.1.1.1
backbone2 ansible_host=10.1.1.2
backbone3 ansible_host=10.1.1.3

[gateway-routers]
gateway1 ansible_host=10.1.2.1
gateway2 ansible_host=10.1.2.2

[switches]
switch1 ansible_host=10.1.3.1
switch2 ansible_host=10.1.3.2
switch3 ansible_host=10.1.3.3
10.1.4.1
10.1.5.1

Inventory File

Groups

Host variable

[routers:children]
backbone-routers
gateway-routers

[backbone-routers]
backbone1 ansible_host=10.1.1.1
backbone2 ansible_host=10.1.1.2
backbone3 ansible_host=10.1.1.3

[gateway-routers]
gateway1 ansible_host=10.1.2.1
gateway2 ansible_host=10.1.2.2

[switches]
switch1 ansible_host=10.1.3.1
switch2 ansible_host=10.1.3.2
switch3 ansible_host=10.1.3.3
10.1.4.1
10.1.5.1

Inventory File

Groups

Groups of Groups

Host variable

[routers:children]
backbone-routers
gateway-routers

[backbone-routers]
backbone1 ansible_host=10.1.1.1
backbone2 ansible_host=10.1.1.2
backbone3 ansible_host=10.1.1.3

[gateway-routers]
gateway1 ansible_host=10.1.2.1
gateway2 ansible_host=10.1.2.2

[switches]
switch1 ansible_host=10.1.3.1
switch2 ansible_host=10.1.3.2
switch3 ansible_host=10.1.3.3
10.1.4.1
10.1.5.1

Running Ansible (2)

Running Ansible (2)
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

Running Ansible (2)
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -i inventory.txt -m raw -a "command" -u <user> -k

Running Ansible (2)
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -i inventory.txt -m raw -a "command" -u <user> -k

Running Ansible (2)
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -i inventory.txt -m raw -a "command" -u <user> -k

 
It WORKS! But this is a lot of typing. 

Running Ansible (2)
$ ansible <device_list> -m <module> -a <attributes> -u <username> -k 
 

$ ansible 10.1.1.1 -i inventory.txt -m raw -a "command" -u <user> -k

 
It WORKS! But this is a lot of typing. 

Let’s create an ansible.cfg file to hold our default settings.

ansible.cfg

Default configuration values

[defaults]
inventory = ./inventory.txt
host_key_checking = False ;Disable checking SSH keys on remote nodes
record_host_keys = False ;Disable recording newly discovered hosts in hostfile
timeout = 10 ;Specify how long to wait for responses
forks = 30 ;Number of parallel processes to spawn
ask_pass = True ;Playbooks should prompt for password by default
ask_vault_pass = True
The following is since we're dealing with Cisco IOS mostly
gathering = explicit ;facts not gathered unless directly requested in play
log_path = ./ansible.log ;log information about executions
module_name = raw ;default module name (-m) value for /usr/bin/ansible
remote_user = frank_seesink
vault_password_file = /path/to/vault_password_file

(Windows INI format)

ansible.cfg Locations

• ANSIBLE_CONFIG 
(an environment variable)

• ansible.cfg (in the current directory)

• .ansible.cfg (in the home directory)

• /etc/ansible/ansible.cfg

Running Ansible (3)

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

$ ansible 10.1.1.1 -a “command”

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

$ ansible 10.1.1.1 -a “command”

 
e.g., 
 
$ ansible 10.1.1.1 -a “show version”

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

$ ansible 10.1.1.1 -a “command”

 
e.g., 
 
$ ansible 10.1.1.1 -a “show version”
$ ansible routers -a “show version”

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

$ ansible 10.1.1.1 -a “command”

 
e.g., 
 
$ ansible 10.1.1.1 -a “show version”
$ ansible routers -a “show version”
$ ansible routers -a “show version” | grep “SUCCESS\|Version”

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

$ ansible 10.1.1.1 -a “command”

 
e.g., 
 
$ ansible 10.1.1.1 -a “show version”
$ ansible routers -a “show version”
$ ansible routers -a “show version” | grep “SUCCESS\|Version”
$ ansible switches -a “show run” | grep “SUCCESS\|username”

Running Ansible (3)
$ ansible <device_list> -i <inventory> —m <module> -a <attributes> -u
<username> -k 
 

$ ansible 10.1.1.1 -a “command”

 
e.g., 
 
$ ansible 10.1.1.1 -a “show version”
$ ansible routers -a “show version”
$ ansible routers -a “show version” | grep “SUCCESS\|Version”
$ ansible switches -a “show run” | grep “SUCCESS\|username”
$ ansible all -a “show run | include ntp”| grep “SUCCESS\| ntp”

Example 1
(single file inventory)

~/
ansible.cfg
inventory.txt
setup_router.yml
vlan.yml

Example 2
(Using directories)

~/
ansible.cfg
group_vars/
backbone-routers
gateway-routers
switches

host_vars/
backbone1
backbone2
…
switch3

inventory.txt
setup_router.yml
vlan.yml

Example 2
(Using directories)

———
ansible_host: 10.1.1.1

———
ansible_host: 10.1.1.2

———
ansible_host: 10.1.3.3

~/
ansible.cfg
group_vars/
backbone-routers
gateway-routers
switches

host_vars/
backbone1
backbone2
…
switch3

inventory.txt
setup_router.yml
vlan.yml

Ansible Playbooks

Ansible Playbooks

• YAML files

Ansible Playbooks

• YAML files

• Starting with Ansible v2.4

• Imperative (define each step) vs.
Declarative (define end state)

Playbook (raw)

- name: Show version of IOS running on routers
 hosts: routers
 gather_facts: false

 tasks:
 - name: Use raw mode to show version
 raw: "show version"

 register: print_output

 - debug: var=print_output.stdout_lines

Playbook (ios_command)

- name: Backup running-config on routers
 hosts: routers
 gather_facts: false
 connection: local

 tasks:
 - name: Backup the current config
 ios_command:
 authorize: yes
 commands: show run

 register: print_output

 - name: save output to a file
 copy: content="{{ print_output.stdout[0] }}" dest="./output/
{{ inventory_hostname }}.txt"

Playbook (ios_command)

- name: Show IOS version and interfaces on switches
 hosts: switches
 gather_facts: false
 connection: local

 tasks:
 - name: Run multiple commands and evaluate the output
 ios_command:
 authorize: yes
 commands:
 - show version
 - show interfaces
 register: print_output

 - debug: var=print_output.stdout

Playbook (ios_command)

- name: Execute 'show version' on device(s)
 hosts: "{{ host }}”
 gather_facts: false
 connection: local

 tasks:
 - name: Run show version
 ios_command:
 authorize: yes
 commands:
 - show version

 register: print_output

 - debug: var=print_output.stdout

ansible-playbook show-version.yml -e “host=newtarget(s)"
ansible-playbook show-version.yml -e “host=routers”

Playbook (ios_config)

- name: Define a VLAN
 hosts: "{{ host | default(‘switches') }}"
 gather_facts: false
 connection: local

 tasks:
 - name: Define VLAN
 ios_config:
 timeout: 60
 authorize: yes
 parents: "vlan {{ vlan }}”
 lines: ”name {{ vlanname }}”

 - name: List VLANs
 ios_command:
 commands: ”show vlan | include {{ vlan }}.*active”
 register: print_output

 - debug: var=print_output.stdout

ansible-playbook set-vlan.yml -e “vlan=250 vlanname=My-new-VLAN”

Playbook (ios_facts)

- name: Collect facts on an IOS device
 hosts: "{{ host | default(‘switches') }}"
 gather_facts: false
 connection: local

 tasks:
 - name: Collect facts
 ios_facts:
 # gather_subset: all

 - debug:
 msg:
 - "Router {{ inventory_hostname }}"
 - "Hostname: {{ ansible_net_hostname }}"
 - "S/N: {{ ansible_net_serialnum }}"
 - "OS version: {{ ansible_net_version }}"
 when:
 - ansible_net_model | regex_search(‘3945')

Precedence
In 2.x, we have made the order of precedence
more specific (with the last listed variables
winning prioritization):

1. role defaults [1]

2. inventory file or script group vars [2]

3. inventory group_vars/all

4. playbook group_vars/all

5. inventory group_vars/*

6. playbook group_vars/*

7. inventory file or script host vars [2]

8. inventory host_vars/*

9. playbook host_vars/*

10.host facts

11.play vars

12. play vars_prompt

13. play vars_files

14. role vars (defined in role/vars/main.yml)

15. block vars (only for tasks in block)

16. task vars (only for the task)

17. role (and include_role) params

18. include params

19. include_vars

20.set_facts / registered vars

21. extra vars (always win precedence)

Source: http://docs.ansible.com/ansible/latest/
playbooks_variables.html#variable-precedence-
where-should-i-put-a-variable

Learning Materials

• https://www.ansible.com/

• https://docs.ansible.com/

• https://www.ansible.com/webinars-
training

• https://www.udemy.com/ansible-for-
network-engineers-cisco-quick-start-
gns3-ansible/

https://www.ansible.com/
https://docs.ansible.com/
https://www.ansible.com/webinars-training
https://www.ansible.com/webinars-training
https://www.udemy.com/ansible-for-network-engineers-cisco-quick-start-gns3-ansible/
https://www.udemy.com/ansible-for-network-engineers-cisco-quick-start-gns3-ansible/
https://www.udemy.com/ansible-for-network-engineers-cisco-quick-start-gns3-ansible/

Questions?
http://frank.seesink.com

http://frank.seesink.com/
presentations/Ansible-

Fall2017

http://frank.seesink.com
http://frank.seesink.com/presentations/Ansible-Fall2017
http://frank.seesink.com/presentations/Ansible-Fall2017
http://frank.seesink.com/presentations/Ansible-Fall2017

	Network Automation Tools and Practices
	Brief Overview of Network Automation
	steve slides
	Techx
	Techx 2
	Techx 3

	Openflow Retrospective
	OIN-OpenFlow-Retrospective
	20171015-Carey-NetworkAutomation-Determining the Value of Network Automation
	Ansible-Fall2017-full

