
Getting Started with Docker

INTRODUCTIONS

ARE YOUR SERVERS
PETS OR CATTLE?

We have emotional
attachments to pets.

Photo by Toronja Azul on Wikimedia Commons

Cattle are easily replaceable.

Photo by Alex Proimos on Wikimedia Commons

WHAT IS DOCKER?

» The Product Suite/Technology

» The Command-line Client

» A Naming Prefix

» The Company

DOCKER IS...

Containers are a method of operating system virtualization

that allow you to run an application and its dependencies in

resource-isolated processes. Containers allow you to easily

package an application's code, configurations, and

dependencies into easy to use building blocks that deliver

environmental consistency, operational efficiency, developer

productivity, and version control. Containers can help ensure

that applications deploy quickly, reliably, and consistently

regardless of deployment environment.

Graphic by Docker

DOCKER ALSO...

These abstractions make it easy to deploy applications on

local computers, in on-premises server farms, or in the

cloud. The abstraction details are worked out at runtime.

Plugins exists for each of these abstractions allowing for lots

of control in your deployment environment.

AM AGENDA

» Hello World!

» Images

» Image Registries

» Containers

» Engine, API, CLI

» Images Revisited

» Storage and Volumes

» Networking

» Docker Compose

PM AGENDA

» Docker Swarm Overview

» Kubernetes Overview

» Mesos & DC/OS Overview

» Docker Swarm In Depth

» Services

» Ingress/Routing Mesh

» Secrets and Configs

» Stacks

DOCKER TECHNOLOGY
 AND COMPONENTS

HANDS ON: HELLO WORLD

Let’s run our first
application!

» docker container run -it \

hello-world

» `Hello-world` application

downloaded.

» `Hello-world` application ran.

» `Hello-world` container

shutdown, but can be restarted.

DOCKER IMAGES

Images contain all types of applications…

...daemons/services like Apache HTTP Server,

MariaDB, RabbitMQ, Grouper, and Shibboleth IdP.

...batch jobs and other short lived-processes like

report generators, file transferrers, and other

actions.

...pretty much anything and everything.

IMAGE REGISTRIES

Images are hosted in
Docker image
registries.

» Locally (on the engine)

» Docker Cloud/Hub (public)

» Private Registries

» *aaS Providers (AWS, Google)

IMAGE REGISTRIES

Image names are
structured.

» imagename

(“official” or locally tagged images)

» repo/imagename

(“unofficial” images)

» hostname.domain/repo/imagename

(non-Docker Hub repos and images)

IMAGE REGISTRIES

Image are tagged.
» repo/imagename:latest

» repo/imagename:<arbitraryTag>

» repo/imagename:<imageHash>

HANDS ON: DOCKER HUB

CONTAINERS

Containers are
» Instantiated images

» Processes

CONTAINERS

Processes running in a
container only see other
processes started in
that container.

For example, `ps aux`
will only show httpd and
its sub-processes,
nothing else on the host
system

Process
Isolation

Containers have their
own isolated file
systems. Only files
added during image
creation, or created by
the running process, are
apart of the container
file system.

File System
Isolation

Containers have their
own software defined
networking stacks,
which include their own
IP address(s).

Multiple containers may
listen on a particular
port (but only one can
be exposed on the host
for a particular port).

Network
Isolation

STARTING CONTAINERS

Start a container and name it:
$ docker container run --name=httpd <imageNameOrId>

Start a centos container with an explicit command:
$ docker container run -it centos:centos7 bash

Start a debian container and connect interactive TTY:
$ docker container run -it debian bash

Start a detached container running Apache
and map host port 81 to the container's port 80:
$ docker container run -d -p 81:80 httpd

Start a detached container specifying some env variables
while running MySQL:
$ docker container run -d \
 -e MYSQL_ROOT_PASSWORD=a_r3@l_P@$$w0rd \
 -e MYSQL_DATABASE=grouper \
 -e MYSQL_USER=grouper \
 -e MYSQL_PASSWORD= @n0th3r_P@$$w0rd \
 mysql

WORKING WITH CONTAINERS

Check the status of running containers:
$ docker container ps

Containers can be stopped and started:
$ docker container start <containerNameOrId>
$ docker container stop <containerNameOrId>

Containers can be forcefully stopped:
$ docker container kill <containerNameOrId>

Containers can be removed (destructive):
$ docker container rm <containerNameOrId>

Attach (ssh in) to a running container:
$ docker container exec -it <containerNameOrId> <command> <parameters>

Files can be copied into and out of containers:
$ docker container cp <containerNameOrId>:/opt/app/data/mydata.csv .
$ docker container cp ./mydata.csv <containerNameOrId>:/opt/app/data/

DOCKER LOGGING - A BRIEF INTERRUPTION

» Containerized apps should write

their logs to standard output.

» View with: `docker container logs

<containerNameOrId>`

» JSON is default logging type.

» Pluggable: Syslog, Splunk,

CloudWatch, etc.

HANDS ON: CONTAINERS

DOCKER COMPONENTS

The Docker Engine does the heavily lifting of

building and downloading images, running

containers, networking, storage, volumes, etc.

It also hosts the Docker API which is how

applications, including the Docker command-line

interface (CLI) interact with a Docker engine.

Image by Docker

CREATING IMAGES

» Dockerfiles are text based files.

» A Dockerfile contains instructions

on how to build an image.

» A Dockerfile contains instructions

on how the container will behave.

Automated

» Changes made in a container can

be saved to an image.

» `docker container commit`

» Rarely used because the image is

not reproducible

» Often used with `docker image

save` and `docker image import`

Manually

Dockerfile

FROM centos:7

RUN yum -y install openssl wget \
 && wget http://internal.example.edu/it-scripts/app-installer.sh

COPY config.ini /etc/config.ini

RUN ./app-install.sh --config config.ini

EXPOSE 80

USER app

VOLUME /var/appd/data

HEALTHCHECK CMD bash -c "[-f /var/appd/data/lockfile]"

CMD [“appd”]

Image by Neo Kebo

Image by Neo Kebo

MULTI-STAGE BUILDS

Since each command
in a Dockerfile
produces a read-only
layer, images can
become big quickly.

» Dockerfile can build multiple

images

» Artifacts can be copied from these

images...

» … leaving the cruft of the artifact

build behind

» … to produce a pristine image

Dockerfile

FROM centos:7 as temp

RUN yum -y install gcc unzip wget

RUN wget http://internal.example.edu/files/big-file.zip

RUN unzip big-file.zip -d /tmp/myfiles

WORKDIR /tmp/myfiles

RUN make myapp

FROM debian:latest

COPY --from=temp /opt/myapp /opt/myapp

CMD [“/opt/myapp/start.sh”]

HANDS ON: IMAGES

DATA STORAGE & VOLUMES

Maps a file or directory

from the Docker host to

a path in the container.

The mount can be

read-write or read-only.

Bind Mounts

Abstraction for storing

persistent container

data.

Volumes

Temporary in-memory
file system. Perfect for
storing data that we do
not want persisted with
a stopped container.

tmpfs

Image by Docker

DOCKER VOLUMES

Docker Volumes can be implicitly or explicitly

created. If a Dockerfile defines a VOLUME then a

docker volume will be created for the container.

Docker will copy any data defined in the path to the

volume. The volume will not be deleted unless

explicitly deleted. Volumes can be shared between

containers.

WORKING WITH MOUNTS & VOLUMES

List volumes on the system:
$ docker volume ls

Volumes can be created and removed:
$ docker volume create <volumeName>
$ docker volume rm <volumeNameOrId>

Start a container with an explicitly named volume:
$ docker run -d \
 --mount type=volume,source=<volumeNameOrId>,target=/<pathToData> \
 nginx:latest

Start a container with a bind mount:
$ docker run -d \
 --mount type=bind,source=/<fullPathOnHost>,target=/<pathToData> \
 nginx:latest

STORAGE AND VOLUME DRIVERS

» Defaults to host filesystem

» Allows you to store your data on

remote hosts or cloud providers

» Faster I/O* than storage drivers

Volume Drivers

» Responsible for managing image

and container data.

» Various options, like

devicemapper, overlay2, aufs.

» Not designed for highly

transaction storage (use a

volume!)

Storage Drivers

HANDS ON: MOUNTS &
VOLUMES

DOCKER NETWORKING

Docker contains a
software-defined
networking stack that
allows for
user-defined
networks.

» Containers are isolated from the

real networking concerns.

» Containers can be connected or

isolated as needed.

» Docker provides a DNS server

that is used by containers to find

each other (discovery).

NETWORK TYPES/DRIVERS

The default type, used
primarily for connecting
standalone containers running
on the same host.

Bridge

Used to network containers
running on different hosts (via
a Docker Swarm cluster). Data
can be optionally encrypted.

Overlay

Removes network isolation
between the container and the
Docker host, and use the host’s
networking directly.

Host

Allows MAC addresses to be
assigned directly to the
container, which makes it
appear as a device on the
network.

MACVLAN

WORKING WITH NETWORKS

List networks on the system:
$ docker network ls

Networks can be created and removed:
$ docker network create <networkName>
$ docker network rm <networkNameOrId>

Create an overlay network with many options specified
$ docker network create \
 --driver overlay \
 --ingress \
 --subnet=10.11.0.0/16 \
 --gateway=10.11.0.2 \
 --opt com.docker.network.driver.mtu=1200 \
 my-ingress

WORKING WITH NETWORKS

Start a container attaching to a network (containers services
only accessible by other containers on the same network):
$ docker run -d \
 --network <networkNameOrId> \
 nginx:latest

Start a container attaching to a network,
also publishing ports to the host’s network:
$ docker run -d \
 --network <networkNameOrId> \
 --publish 80:80 \
 nginx:latest

HANDS ON: NETWORKING

DOCKER-COMPOSE

is a tool for defining and
running multi-container
Docker applications for
automated testing
environments and single host
deployments.

Docker Compose

Multiple isolated environments
on a single host (namespacing);
only recreates containers that
have changed

Benefits

Declaratively define volumes,
mounts, networks, and secrets.

YAML Config

`docker-compose up`
`docker-compose down`
`docker-compose build`
`docker-compose logs`
`docker-compose scale`

Easy to Use

A DOCKER-COMPOSE FILE

version: "3"
services:
 lb:
 image: dockercloud/haproxy
 networks:
 - webnet
 ports:
 - "80:80"
 web:
 build: ./web-image
 networks :
 - webnet
 - redisnet
 deploy:
 replicas: 5
 restart_policy:
 condition: on-failure
 redis:
 image: redis
 networks :
 - redisnet

networks:
 webnet:
 redisnet:

HANDS ON:
DOCKER-COMPOSE

Docker Miscellany

» `docker system prune` will reclaim lots of

system resources.

» Docker images can be cryptographically signed.

» https://portainer.io/ is a great UI for managing

basic Docker installations.

» Deck-chores is a job scheduler.

» OpenFaaS is for serverless functions.

Docker Editions

» Various levels of paid support

» Include the Universal Control

Plane and Docker Trusted

Registry

» Must deploy engine in the

prescribed/certified way (to get

support).

Enterprise Edition

» Free!

» Docker Engine, API, CLI included

Community Edition

END PART 1

CONTAINER
ORCHESTRATION

Orchestration: Keeping our
containers in the air.

Photo: Juggling by Shabai Liu

Orchestration

» manage a collection of hosts/nodes

» maintaining the desired number of

container instances

» restrict hosts by labels and resource

specifications

» permit access to necessary

configurations and secrets

Image by Android baba (Wikimedia Commons)

Docker Swarm

Docker Swarm is by far the most light-touch Docker

orchestration technology available. It is already

installed with Docker Engine and only requires a

few open networking ports to allow the cluster to

form. Management of the swarm is done through

the Docker CLI/API.

Image by Docker

Kubernetes

» Originally developed by Google, now

open sourced.

» Has more functionality than Swarm.

» Supported by AWS, Azure, Cloud, ...

» Checkout Rancher OS for on-prem.

» Docker EE has support built-in.

Image by Khtan66 (Wikimedia Commons)

Mesos & DC/OS

Apache Mesos is the open-source distributed

systems kernel at the heart of the Mesosphere

DC/OS.Image by Mesophere

DOCKER SWARM IN ACTION

A service is a collection

of one or more

instances of a container

(known as a task)

providing a given

function. For example, a

“web” service running 2

copies of a web

application.

Services

All Docker hosts can

receive inbound traffic.

If it is for a container

that is not running on

the receiving host, it will

be dynamically routed

to a host that is.

Ingress/Routing
Mesh Networking

Allows for injecting

configuration files and

secrets into containers

at runtime.

Secrets and
Configs

CREATING A SWARM

Create the a new Swarm:
$ docker swarm init --advertise-addr <MANAGER-IP>

Adding worker nodes:
$ docker swarm join … (see the init command’s output)

Adding additional manager nodes:
$ docker swarm join-token manager (then follow the instructions)

Get instructions for adding new worker nodes later:
$ docker swarm join-token worker

List Nodes in Swarm
$ docker nodes ls

Drain a node (Other availability options are: active, pause):
$ docker node update --availability drain worker1

Remove a node from a swarm:
$ docker node rm <nodeId>

WORKING WITH SWARM SERVICES

Starting a service:
$ docker service create --name <serviceName> <image> [cmd] [params]

List the swarm’s services:
$ docker service ls

Inspect a service:
$ docker service inspect --pretty <serviceNameOrId>

Dump logs of a service:
$ docker service logs <serviceNameOrId>

List the tasks (aka containers) of a service:
$ docker service ps <serviceNameOrId> (to identify the node)

Scales a service:
$ docker service scale <serviceNameOrId>=<NUMBER-OF-TASKS>

Apply an update to a service (the other properties can be updated too):
$ docker service update --image <newImageBameOrId:Ortag> <serviceNameOrId>

Remove a service:
$ docker service rm <serviceNameOrId>

INGRESS/ROUTING MESH NETWORKING

All swarm nodes listen for connections on the
swarm’s service’s published ports. Traffic is internally
load balanced to the service’s tasks (containers).

The Swarm Ingress load balancer is not sticky!

A reverse proxy or application-specific session replication is

required for stateful web apps. Use the `mode=host`

--publish option to bypass ingress routing. (Docker EE does

have stateful load balancing options.)

Traefik and Docker Flow seems to be a good option to

provide in Swarm stateful sessions.

docker service create –name <serviceName> --publish

<publishedPort>:<targetPort> <imageName>

Image by Docker

SECRETS AND CONFIGS

» Not stored encrypted… DO NOT

USE FOR SECRETS.

» Can be mounted anywhere in the

container.

» Are read-only.

Configs

» Encrypted at rest, only

un-encrypted for hosts running

the requisite service.

» Are mounted at

`/run/secrets/<secret_name>`.

» Are read-only.

Secrets

Image by Docker

WORKING WITH SECRETS AND CONFIGS

Add a secret to the swarm
$ docker secret create <secretName> <file path or `-` to read from stdin>

Inspect a secret
$ docker secret inspect

List secrets stored by the swarm
$ docker secret ls

Delete a secret from the swarm
$ docker secret rm

assigns the secret to the container at startup
$ docker service create --secret <secretNameOrId> <serviceNameOrId>

Assign or remove a secret to an existing service.
$ docker service update --secret-add <secretNameOrId> <serviceNameOrId>

Remove a secret from an existing service
$ docker service update --secret-rm <secretNameOrId> <serviceNameOrId>

WORKING WITH SECRETS AND CONFIGS

Add a config to the swarm
$ docker config create <configName> <file path or `-` to read from stdin>

Inspect a config
$ docker config inspect

List config stored by the swarm
$ docker config ls

Delete a config from the swarm
$ docker config rm

Assigns the config to the container at startup
$ docker service create --config src=<configNameOrId>, \
 target=<path> <serviceNameOrId>

Assign or remove a config to an existing service.
$ docker service update --config-add src=<configNameOrId>, \
 target=<path> <serviceNameOrId>

Remove a config from an existing service
$ docker service update --config-rm <configNameOrId> <serviceNameOrId>

STACKS

» Stacks are a way to declaratively

define/deploy a related set of

services, networks, volumes,

configs and secrets.

» File uses a YAML format.

» All assets of a stack are

namespaced with the stack name.

A COMPOSE FILE (STACK FILE)

version: "3"
services:
 lb:
 image: dockercloud/haproxy
 networks:
 - webnet
 ports:
 - "80:80"
 web:
 image: dockercloud/quickstart-python
 networks :
 - redisnet
 deploy:
 replicas: 5
 restart_policy:
 condition: on-failure
 redis:
 image: redis

networks:
 webnet:
 redisnet:

WORKING WITH STACKS

Deploy or update a stack
$ docker stack deploy -c <compose file> <stackName>

Remove the stack
$ docker stack ls

Remove the stack
$ docker stack rm <stackNameOrId>

HANDS ON: DOCKER SWARM

Evolution

» CI/CD tools, like Jenkins, can

automate building, publishing, and

deploying your (custom) images.

» CloudFormation and Terraform can

declaratively automate the

provisioning and scaling of

hardware.

Image by John Gasper

FINAL THOUGHTS

Pick an application that can be
installed easily and start small.
You don’t need to use all of the
Docker features right away.

Start Small

Pick an app that does not need
to store persistent data in the
container. If the container gets
removed, nothing catastrophic
should be lost.

Start Stateless

Use the resources at
http://training.play-with-docker
.com/alacart/.

More Training

Docker has lots of good free
documentation. It is even
available as an image for those
long WiFi-less flights.

Spend Time in the
Docs

Embrace...
Photo by Latham Jenkins (Flickr: JacksonHoleTraveler).

John Gasper

https://www.facebook.com/UniconNet
https://twitter.com/unicon
https://plus.google.com/+unicon/posts
http://www.youtube.com/user/UNICONnet
https://www.linkedin.com/company/unicon-inc

SPECIALIZATION TITLE

Client Name

Objective Solution

